Free CME course on neurological infections of Bartonella

Invisible International has released a new course on neurological and neuropsychiatric manifestations of Bartonella, a family of stealth bacteria best known for causing cat scratch disease and trench fever. This course discusses neurological presentations, diagnostic strategies, and emerging evidence showing a possible association between Bartonella and schizophrenia.

In the last few years, there has been a growing body of knowledge on the Bartonella family of bacteria. In this course, Edward Breitschwerdt, DVM, a leading expert on Bartonellosis in mammals, delivers the latest research and paints a disturbing picture of what can go wrong if a neurological Bartonella infection runs rampant in an immunocompromised or immunocompetent patient.

In humans, a Bartonella henselae infection (aka cat scratch disease) typically starts with a fever and swelling or lesions at the wound site, appearing three to 10 days after a bite or scratch from an infected mammal. Swollen lymph nodes show up one to two weeks later, and half of patients report headaches, lack of appetite, weight loss, vomiting, and, occasionally, a sore throat.

Five to 20 percent of those infected with cat scratch disease (i.e. an acute Bartonella henselae infection) exhibit severe symptoms, according to national insurance claims data published in the July 2020 issue of Emerging Infectious Diseases. These complications can involve the eyes, heart, liver, spleen, skin, musculoskeletal system and, the focus of this course, the nervous system.

Dr. Breitschwerdt believes that Bartonella is an underdiagnosed driver of many neurologic and neuropsychiatric diseases of unknown cause. He calls his fellow veterinarian workers “the canaries in the coal mine” for this emerging threat, citing a study that showed that 28% of the study’s veterinarian worker subjects were infected with the bacteria, based upon the detection of Bartonella DNA in their blood. He also reminds physicians to ask sick patients about their exposure to animals, bites and scratches, flea infestations and exposures to other known or suspected vectors for Bartonella transmission. Bartonella often occurs in families, infecting both pets and their human companions.

One of the most intriguing parts of this new course is the discussion of a recent study generated with his University of North Carolina research collaborators. The study found that people with schizophrenia were more likely than healthy volunteers to have Bartonella DNA in their bloodstream. In this study, 11 of 17 schizophrenia patients (65 percent, compared with 13 healthy controls) tested positive for Bartonella using the new “droplet digital enrichment blood culture PCR test” that his research team developed. Because this study was halted early due to the COVID-19 pandemic, a larger study is being planned at this time.

Edward Breitschwerdt, DVM, the course’s author, is the Melanie S. Steele professor of medicine and infectious diseases at the North Carolina State University College of Veterinary Medicine. He is also an adjunct professor of medicine at Duke University Medical Center and a diplomate in the American College of Veterinary Internal Medicine (ACVIM). As a leading expert on bartonellosis, he directs the Intracellular Pathogens Research Laboratory in the Institute for Comparative Medicine and co-directs the Vector Borne Diseases Diagnostic Laboratory at NCSU. This course is currently in review for CME credit by the American Academy of Family Physicians.

This project is funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates at: https://invisible.international/mission

Links to Bartonella courses: History of a hidden pandemic, Vectors and other modes of transmission, Reservoir hosts: Bats, cats, dogs, mice and men, Comparative infectious disease causation, Disease expression and host immunity, and Diagnosis of Bartonella species infections.

A historic case study on chronic Lyme disease

In this free medical education course, Kenneth Liegner, MD, a New York-based internist who has been treating tick-borne disease patients since 1988, discusses one of the earliest documented cases of chronic Lyme disease.

In 1987, Vicki Logan, a 39-year-old pediatric intensive-care-unit nurse from Goldens Bridge, New York, began suffering from headaches, fevers, fatigue, progressive paralysis, cognitive difficulties, and memory loss. Her doctors couldn’t figure out what was wrong, so she was left to cope with this debilitating chronic illness on her own.

Two years later, Dr. Kenneth Liegner of Pawling, NY, decided to take on Logan as a patient, in what may be one of the earliest and most scientifically validated case of chronic Lyme disease on record.

First, he tested Logan for Lyme disease, and all the tests came back negative. She had no history of tick bite or rash, but he knew that Logan lived in a hot spot for Lyme disease, so he decided to presumptively treat her with intravenous antibiotics. After three weeks of IV cefotaxime and four months of oral minocycline, he saw no improvement in her condition.

This started a long diagnostic process to figure out what was wrong with Logan. Along the way, Dr. Liegner consulted with experts in rheumatology, immunology, and neurology. Repeatedly he sent her cerebral spinal fluid (CSF) to pathologists, all of whom observed no bacterial infections. Finally, he sent a spinal fluid sample to the Centers for Disease Control (CDC), and, when the fluid was placed in a special BSK-II growth medium, spirochetes began multiplying. On Jan. 14, 1994, the CDC experts verified that this was the first “gold standard” proof that the Lyme bacterium, Borrelia burgdorferi, can survive in a patient after months of IV and oral antibiotic treatments.

Because Logan’s Lyme disease case was so well documented, her post-mortem tissues have been used in numerous research studies. These studies have shown that the Lyme bacteria had invaded her heart, liver, and brain. A more recent study suggests that Borrelia burgdorferi is able to withstand the administration of antibiotics by forming biofilm structures, protective clusters of microbes, polysaccharides, proteins, lipids, and DNA, around itself.

You can watch a first-hand account of this fascinating medical mystery story here.

***

This course is part of Invisible International’s Education Platform for Tick-borne Illness, funded by the Montecalvo Family Foundation. It currently offers more than 22 free, online Continuing Medical Education (CME) courses on the diagnostics, epidemiology, immunology, symptoms, and treatment of Lyme disease, Bartonellosis, and other tick-borne diseases.

Invisible International, a 501(c)(3) nonprofit organization, is committed to alleviating the suffering caused by invisible illnesses, through education, research, and community empowerment.

You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Borrelia persistence “Bench to Bedside” E-Colloquium, Antibiotic efficacy for treatment of Lyme disease, The impact of immune responses on diagnosis and treatment of Lyme disease

Lyme testing: The good, the bad, and the ugly

In the free medical education course, “Serologic testing in Lyme disease,” Elizabeth L. Maloney, MD, a Minnesota family physician and tick-borne disease educator, reviews published studies that evaluate current Lyme disease tests and discusses how these tests should be used in diagnosing patients.

I think many experts would agree with me on this point: The United States’ Lyme disease testing strategy is confusing, time consuming, subject to human error, and urgently in need of a technology upgrade. The quickest way to get up to speed on the good, the bad, and the ugly of Lyme testing is to watch Dr. Elizabeth Maloney’s accredited medical education course on the topic. With clarity and precision, Dr. Maloney explains the specificity, sensitivity, and accuracy of the most widely used Lyme tests, discussing how these tests should be used in a clinical setting and illuminating areas for improvement for the next generation of diagnostic approaches.

The underlying message of the lecture is that we can do better, and this is the reason Invisible International is launching a “Tick-borne Illness Diagnostics Development Incubator,” a yearlong collaborative forum designed to bring together teams of multidisciplinary innovators to look at diagnostic protocols, processes, and tests anew, with an eye to accelerating better diagnostic solutions. In this forum, we’ll bring together researchers, diagnostics companies, patient representatives, government representatives, and industry funders to brainstorm on ways to remove roadblocks to innovation. We’ll also feature lectures covering areas such as concept seed funding, getting through the regulatory pipeline, and fundamentals of low-cost diagnostics design.

This incubator is designed to complement the LymeX Tick-Borne Disease Innovation Accelerator, which will be offering prizes for the development for better early Lyme diagnostics. [Lyme X is funded with $25 million from the Steven & Alexandra Cohen Foundation and co-managed with the U.S. Department of Health and Human Services (HHS).] The Invisible Incubator is way to gain a competitive edge in this competition, by making it easy to engage with clinical, lab, and collaborators, and by participating in forums where past and emerging technologies will be discussed.

If you’d like to join the effort to improve Lyme diagnostics, please watch this educational primer on Lyme testing, then join us Saturday, October 30, 1:00 to 2:30 p.m. EST.* Registering at https://www.hack.invisible.international/ (*This presentation will be recorded and posted on Invisible’s website after the event.)

This continuing medical education course was funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Basic principles of diagnostic testing7 years of blood-based Lyme disease testingCase studies in early Lyme disease.

Photo credit: Pollyana Ventura, iStock

The state of tick-borne illness diagnostics: Learn, engage, and accelerate

Invisible International is launching a yearlong “Tick-borne Illness Diagnostics Development Incubator,” starting with an online briefing, “The State of Tick-Borne Illness Diagnostics: Learn, Engage, Accelerate.”When: Saturday, October 30, 1:00 to 2:30 p.m. EST.
Registration: https://www.hack.invisible.international/

The weak link in reducing the public health burden of Lyme disease and other tick-borne illnesses is the lack of fast, cheap, and reliable diagnostic approaches. Early Lyme diagnoses are often delayed because the Lyme screening tests aren’t reliable in the first month after infection and not everyone produces or notices a bullseye rash. In the later stages of the disease, antibody testing can be unreliable in the sickest patients, those whose antibody production may be hobbled by concurrent infections or a weak immune system. There’s also no simple diagnostic roadmap to follow when multiple tick-borne pathogens may be involved.

This briefing will mark the start of Invisible International’s “Tick-borne Illness Diagnostics Development Incubator,” a yearlong collaborative forum designed to bring together teams of multidisciplinary innovators to look at diagnostic protocols, processes, and tests anew, with an eye to accelerating better solutions. We’ll bring together researchers, diagnostics companies, patient representatives, government representatives, and industry funders to brainstorm on ways to remove roadblocks to innovation. We’ll also feature lectures covering areas such as concept seed funding, getting through the regulatory pipeline, and fundamentals of low-cost diagnostics design.

This incubator is designed to complement the LymeX Diagnostics Moonshot, which will be offering prizes for the development for better early Lyme diagnostics over three phases. [Lyme X is funded with $25 million from the Steven & Alexandra Cohen Foundation and co-managed with the U.S. Department of Health and Human Services (HHS). Competition details will be posted later this year at Challenge.gov. ] The Invisible Incubator is way to gain a competitive edge in this competition, by making it easy to engage with clinical, lab, and collaborators, and by participating in forums where past and emerging technologies will be discussed.

The “The State of Tick-Borne Illness Diagnostics” briefing will feature:

Introductions: 

Mark Lovell, PhD, former Chairman and Chief Scientific Officer at ImPACT Applications, Inc.; Chair of Invisible’s Lovell Innovation Platform and Advisory Board

Valerie Montecalvo, President, Bayshore Recycling; Chair of Invisible’s Montecalvo Platform for Tick-Borne Illness Education and Strategic Initiatives

Keynote: The human cost of poor diagnostics
Nicole Bell, executive, entrepreneur, and author of What Lurks in the Woods: Struggle and Hope in the Midst of Chronic Illness, A Memoir

·Demystifying commercialization

Rhonda Shrader, Invisible International Innovation Chair; Executive Director, Berkeley Haas Entrepreneurship, UC Berkeley; and NSF I-Corps, Bay Area Node Director

Amanda Elam, CEO/Cofounder of Galaxy Diagnostics, Inc. and Entrepreneurship Research Fellow at Babson College

Why patient input is important

Emily Lovell, Invisible International Advisory Board and computer science researcher/educator

Perspectives from the diagnostic trenches

Representatives from three specialty labs will share their take on today’s diagnostic technologies today and what’s needed in the future

Invisible International

Nev Zubcevik, DO, CMO, Call for better diagnostic tools from the clinical trenches

Laura Lott, CEO, Learn, engage, accelerate: Why your team should join the challenge

The “Tick-borne Disease Diagnostics Innovation Incubator” is a component of Invisible’s Lovell Innovation Platform, funded by a trailblazing donation by Mark and Eileen Lovell. Thanks to their generous support, Invisible International is delivering programs that will change the landscape of tick-borne illness and other invisible illnesses through community action, education, and research.

When: Saturday, October 30, 1:00 to 2:30 p.m. EST.*
Registration: https://www.hack.invisible.international/

*This presentation will be recorded and posted on Invisible’s website after the event

Tulane researcher discusses the evidence for persistent Lyme and promising new treatment strategies

Monica Embers, PhD, director of the vector-borne disease research center at Tulane University School of Medicine, summarizes evidence that suggests that Lyme bacteria can survive long after standard treatment protocols in a new online medical education course. She also discusses promising new treatment strategies for eradicating these bacteria.

Emerging evidence from animal studies suggest that the Lyme disease bacterium, Borrelia burgdorferi, is a clever trickster that uses multiple strategies to evade the immune system and survive long after an onslaught of the recommended course of antibiotics. This begs the question—Are our current Lyme treatment protocols all wrong?

In the accredited continuing medical education course, “Antibiotic efficacy for treatment of Lyme disease,” Monica Embers, associate professor of microbiology and immunology and a leading expert in investigating B. burgdorferi infections in a nonhuman primate model, summarizes current Lyme treatment protocols, key studies on antibiotic efficacy, and new strategies aimed at curing the infection.

“It’s clear from the cumulative evidence that persistent Lyme disease is a common occurrence and that we urgently need to explore more effective treatment strategies,” said Embers.

This new 32-minute course, part of Invisible’s Montecalvo Platform for Tick-Borne Illness Education, has been approved for 0.5 CME credit by the American Academy of Family Physicians. Each CME course includes a list of studies cited in the lecture.

One of the more surprising revelations in the lecture is that doxycycline, the drug of choice for treating adults with Lyme disease, doesn’t clear all of the causative bacteria. It only slows their proliferation, disrupting cell-wall creation as each forms a copy of itself by splitting into two. When the Lyme bacteria sense doxycycline, they shapeshift into spherical, dormant forms called persister cells, so they can wait out the chemical storm.

Dr. Embers backs up these claims with a series of thoughtfully designed experiments on nonhuman primates, our closest mammalian relatives. In one study, she treated five rhesus macaques with a 28-day course of doxycycline and five without. A year after the trial began, nine out of the 10 macaques, both treated and untreated, showed signs of ongoing illness and live Lyme spirochetes were isolated. In addition, those that received doxycycline had more bacteria in the brain.

The study’s conclusion: “We observed evidence of persistent, intact, metabolically-active B. burgdorferi after antibiotic treatment of disseminated infection and showed that persistence may not be reflected by maintenance of specific antibody production by the host.”

Simply put, treating with doxycycline didn’t seem to be a cure, and the Lyme bacteria appear to have ways of suppressing antibody production so that it can fly under the radar of the immune system.

Given this evidence, why does the medical establishment still recommend doxycycline as a front-line Lyme treatment? One reason is that doxycycline appears to be effective at most early infections, along with Rocky Mountain Spotted Fever and anaplasmosis, other serious tick-borne diseases that are often mistaken for Lyme disease in the early stages.

Embers also says that treatment study results may be skewed by the overuse of mice as test subjects. Mice are cheap, but they’re lousy stand-ins for humans. They’ve evolved alongside ticks to serve as a living holding tanks for the Lyme bacteria, so they don’t get as sick as humans when infected.

Lyme disease is the fastest vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. Approximately 10 to 20% of those treated with antibiotics go on to experience disabling long-haul symptoms, such as severe fatigue, joint/muscle pain, brain fog, and neurologic symptoms. There have been no human treatment studies published in over 20 years, and only 0.30% of the National Institutes of Health Lyme research budget has been focused on human treatment studies in the last five years (2015-2019).

At the end of lecture, Dr. Embers cited several lab studies (bacteria-in-a-dish) and animal studies showing that a cocktail of three antibiotics are highly effective in eradicating the Lyme bacteria. (This study from Johns Hopkins found that a combination of daptomycin, cefoperazone and doxycycline was effective in eradicating persister cells.) But of course, clinical trials are needed to validate these findings.

One of the ways Invisible International is working to accelerate the movement of treatment evidence to patient care is by launching Tick Bytes, a centralized clinical data repository that provides quality de-identified tick-borne illness patient data to researchers nationwide. Researchers can mine this data using advanced biostatistical methods to discover symptom profiles for mixed infections and treatment regimens that work. With this precision medicine approach, more quality evidence will reach physicians, insurers, and the government. This in turn will improve diagnostics and treatment options, leading to better outcomes, insurance coverage, and more sophisticated understanding of tick-borne diseases. Invisible is currently looking for funding for 10 data collection sites.

Dr. Embers’ CME course was funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates on our website.

Invisible International is a 501c3 that aims to solve challenges related to tick-borne illness through research and physician education. Its core team includes health care providers and scientists specializing in Infectious Disease, Internal Medicine, Family Medicine, Pathology, Pharmacy, Psychology, and Physical Medicine and Rehabilitation, as well as innovation and healthcare leaders.

Other related courses: The impact of immune responses on diagnosis and treatment of Lyme diseaseBorrelia persistence “Bench to Bedside” E-ColloquiumPersistent Lyme disease

Image credit: Hailshadow at iStock

Harvard study identifies symptom clusters in Lyme patients with persistent symptoms after treatment

retrospective study of 270 post-treatment Lyme patients identified the most debilitating neurological symptoms, paving the way for future studies on root causes of disease and better treatments.

The largest study to-date characterizing ongoing symptoms [1] of Lyme patients after antibiotic treatment has been published by a group of investigators at Harvard-affiliated hospitals and Invisible International, a non-profit organization. They also examined the relationship between symptom severity and perceived disability, identifying five of the most debilitating symptom categories — fatigue, cognitive deficits, neuropathy (nerve numbness or weakness in the extremities), migraine headaches, and mood disorders.

The study lays a scientific foundation for future research that will help the growing ranks of post-treatment Lyme patients suffering from lingering symptoms. Lyme disease is the fastest vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. Approximately 10 to 36% [2] of those treated with antibiotics go on to experience disabling long-haul symptoms, such as severe fatigue, joint/muscle pain, cognitive problems, and neurologic symptoms.

Patient impairment was assessed through medical chart reviews of 270 individuals who had been treated for Lyme borreliosis through the Dean Center for Tick-Borne Illness at Spaulding Rehabilitation Hospital Boston, a Harvard affiliate, between 2015 and 2018. Symptom and disability data was also collected through scientifically validated questionnaires. Symptom clusters were defined as two or more symptoms occurring together, indicating that they might share the same triggering mechanism. This approach, used in other chronic conditions, such as cancer and inflammatory bowel disease, helps guide researchers in identifying root causes and better treatment strategies.

“This study is an important first step in figuring out why these patients aren’t getting better,” said Dr. Nevena Zubcevik, DO, the first author on the study and the former co-director of the Dean Center for Tick Borne Illness. “Going forward, we’re taking what we’ve learned to set up a multi-institutional clinical data repository that will provide high quality, de-identified tick-borne illness patient data to any interested researcher.”

To expedite the discovery of clinical treatments for patients suffering with chronic tick-borne illness, Dr. Zubcevik is now leading the Tick Bytes Clinical Data Research Platform through Invisible International, in her role as Chief Medical Officer. The resulting open-source data would enable researchers to access prospectively acquired clinical and laboratory data, as well as possible biorepository specimens, on a large group of well-defined pediatric and adult patients with complex Lyme disease. This repository would also collect data on mixed infections and/or environmental/toxic exposures, influences that often worsen the outcomes of these patients. Using this precision-medicine approach, more quality evidence will reach physicians, insurers, and government. This, in turn, will improve diagnostics and treatment options, leading to better outcomes, insurance coverage, and government funding. Invisible is currently raising funds to launch 10 data collection sites at research institutions, community clinics, and hospitals across the nation.

Invisible International, a 501(c)(3) nonprofit organization, is dedicated to reducing the suffering and social marginalization associated with invisible illnesses through innovation, education, and data-driven change projects. Invisible’s core team includes board-certified health-care providers in Infectious Disease, Internal Medicine, Family Medicine, Psychiatry, Pharmacy, Pathology, and Physical Medicine and Rehabilitation, many trained at or are affiliated with top-tier universities such as Harvard, Stanford, MIT, Brown, UC Berkeley, UC San Francisco, the US Air Force Academy, University of Virginia, and University of Pittsburgh.

This study and Invisible International’s Change Platform for Tick-borne Illness were funded by generous donations from Mark and Eileen Lovell. The organization is currently seeking additional support to expand its TickBytes data collection sites. To learn more about how you can help, go to: https://invisible.international/give

You can sign up to receive news and updates at https://invisible.international/mission

 ###

Other related courses: Persistent Lyme diseaseNeurologic complications of Lyme diseaseBorrelia persistence “Bench to Bedside” E-Colloquium

Photo credit: francescoch/iStock

End Notes

[1]

Marques A. Chronic Lyme disease: a review. Infect Dis Clin North Am. 2008;22(2):341-viii. doi:10.1016/j.idc.2007.12.011

Asch ES, Bujak DI, Weiss M, Peterson MG, Weinstein A. Lyme disease: an infectious and postinfectious syndrome. J Rheumatol. 1994 Mar;21(3):454-61. PMID: 8006888. [Retrospective evaluation of 215 Lyme patients who were diagnosed and treated > 1 year prior.  Found/described persistent symptoms in 114 (53%).]

Clarissou J, Song A, Bernede C, et al. Efficacy of a long-term antibiotic treatment in patients with a chronic Tick Associated Poly-organic Syndrome (TAPOS). Med Mal Infect. 2009;39(2):108-115. doi:10.1016/j.medmal.2008.11.012. [Open-label prospective study of 100 patients after treatment for chronic TAPOS (Tick Associated Poly-Organic Syndrome), evaluating their evolution on prolonged antibiotics.]

Horowitz RI, Freeman PR. Precision Medicine: The Role of the MSIDS Model in Defining, Diagnosing, and Treating Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome and Other Chronic Illness: Part 2. Healthcare. 2018; 6(4):129. https://doi.org/10.3390/healthcare6040129. [Patient symptom survey and retrospective chart review of 200 patients with chronic Lyme/PTLDS.]

[2]

Strle, F., Cimperman, J., Maraspin, V. et al. Azithromycin versus doxycycline for treatment of erythema migrans: Clinical and microbiological findings. Infection 21, 83–88 (1993). https://doi.org/10.1007/BF01710737. [“Minor” symptoms in 15/52 (29%) who received doxycycline and 10/55 (18%) who received azithromycin.]

Dattwyler, R.J.; Luft, B.J.; Kunkel, M.J.; Finkel, M.F.; Wormser, G.P.; Rush, T.J.; Grunwaldt, E.; Agger, W.A.; Franklin, M.; Oswald, D.; et al. Ceftriaxone compared with doxycycline for the treatment of acute disseminated Lyme disease. N. Engl. J. Med. 1997, 337, 289–294. [Persistent symptoms at last follow-up visit in 18/68 (26%) Ceftriaxone vs 10/72 (13.9%) doxycycline.]

Aucott JN, Rebman AW, Crowder LA, Kortte KB. Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: is there something here?. Qual Life Res. 2013;22(1):75-84. doi:10.1007/s11136-012-0126-6. [Prospective cohort study of 63 patients with EM rash and systemic symptoms treated with doxycycline reported a 36% rate of PTLDS.]

Experts discuss strategies for fighting those Lyme symptoms that won’t go away

Two tick-borne disease experts, a physician and a researcher, discuss the many ways Lyme bacteria evade the immune system and promising new strategies for fighting lingering symptoms.

People with long-haul Lyme disease symptoms are often sidelined by the medical community. In a 2019 survey of 1,900 Lyme patients, 74% reported being treated disrespectfully by a healthcare provider, and 67% said that they postponed or avoided medical treatment due to discrimination, disrespect, or difficulty obtaining care.

Many of these patients develop chronic Lyme because the latest evidence on diagnostics and treatment isn’t reaching busy frontline physicians, who misdiagnose or undertreat. Some health-care providers don’t know that about 30% of Lyme sufferers don’t see the classic Lyme rash. Or that the Lyme screening tests aren’t reliable in the first month after infection. Or that 10 to 20% of the Lyme patients fail to recover after taking the short course of antibiotics recommended by the Infectious Diseases Society of America (IDSA). And, to add insult to injury, there have been no new NIH-funded chronic Lyme treatment trials for more than 20 years — and Lyme sufferers need relief now.

Invisible International aims to fuel meaningful change for patients by accelerating the flow of new medical knowledge to treating physicians through the Bench-to-Bedside E-Colloquium, a monthly series of interactive discussions between world class researchers and boots-on-the-ground clinicians. The objective is to educate the medical and patient communities about promising new research and treatments, and to build bridges between these communities. Each colloquium will be annotated with the latest evidence from peer-reviewed journal articles.

The inaugural E-Colloquium tackles the controversial topic of “Borrelia persistence,” addressing the questions, “How does the Lyme bacterium, Borrelia burgdorferi, survive a recommended dose of antibiotics in the human body, and what treatment strategies can be used to eradicate the surviving organisms?”

The panel features Kenneth Liegner, MD, a distinguished internist who has been diagnosing and treating Lyme disease and related disorders since 1988, and Monica Embers, PhD, associate professor of microbiology and immunology and the director of the vector-borne disease research center at Tulane University School of Medicine. Embers is a leading expert in identifying treatments that can eradicate B. burgdorferi infections in primates, our closest mammalian relatives. The discussion is moderated by Christine Green, MD, a Stanford-trained and board-certified family medicine physician with 30 years of experience treating patients with tick-borne illness.

Invisible International’s Education Platform for Tick-borne Illness is funded by the Montecalvo Family Foundation, and the organization is currently seeking support to expand the E-Colloquium program. This platform currently offers more than 20 free, online Continuing Medical Education (CME) courses on the diagnostics, epidemiology, immunology, symptoms, and treatment of Lyme disease, Bartonellosis, and other tick-borne diseases.

Invisible International, a 501(c)(3) nonprofit organization, is dedicated to reducing the suffering and social marginalization associated with invisible illnesses through innovation, education, and data-driven change projects. Their core team includes board-certified health-care providers in Infectious Disease, Internal Medicine, Family Medicine, Psychiatry, Pharmacy, Pathology, and Physical Medicine and Rehabilitation, many trained at or affiliated with top-tier universities such as Harvard, Stanford, MIT, Brown, UC Berkeley, UC San Francisco, the US Air Force Academy, University of Virginia, and University of Pittsburgh.

You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Basic principles of diagnostic testingAntibiotic efficacy for treatment of Lyme diseaseThe impact of immune responses on diagnosis and treatment of Lyme disease

Image credit: Happy Photon, iStock

Lyme advocates weigh-in on research priorities at HHS-LymeX workshop

Invisible’s Chief Medical Officer, Dr. Nevena Zubcevik, joins other Lyme patient advocates in setting priorities for the largest public-private research initiative launched since Lyme disease was discovered.

Last October, the Steven & Alexandra Cohen Foundation announced that they would donate $25 million to the LymeX Innovation Accelerator, a research prize competition to develop better tick-borne disease diagnostics. The competition recently entered its next phase, the collection of ideas from disease stakeholders — patient representatives, the government, academic medicine, and industry — to help define the prize guidelines.

To facilitate this process, the U.S. Department of Health and Human Services (HHS) hosted a LymeX Roundtable Webinar on April 28, 2021, which featured presentations and workshops with key stakeholders.

Dr. Nevena Zubcevik, Invisible’s Chief Medical Officer, was the workshop’s first lightning talk speaker, and in her presentation (starting at minute 37:43), she succinctly summarized why these prizes are so desperately needed: Only about 1 percent of the National Institutes of Health’s Lyme disease research budget (2015 thru 2019) went towards exploring better treatments for the nearly 500,000 Americans who get Lyme disease each year. Her emphatic message to the audience — We need more patient-focused solutions to bring relief to the millions suffering from tick-borne diseases today.

Invisible is working to remedy the treatment gap by launching the Tick Bytes Clinical Data Research Platform. This multi-institutional clinical data repository will provide quality de-identified tick-borne illness patient data to researchers. Researchers can then mine this data using advanced biostatistical methods to discover symptom profiles for mixed infections and treatment regimens that work. With this precision medicine approach, more quality evidence will reach physicians, insurers, and government. This, in turn, will improve diagnostics and treatment options, leading to better outcomes, insurance coverage, and government funding. Invisible is currently raising funds to launch 10 data collection sites at research institutions, community clinics, and hospitals across the nation. To learn more about how you can help, go to: https://invisible.international/give

The Cohen’s $25 million prize fund represents a whopping 50-percent boost to the 2021 NIH Lyme-related research budget, and, most importantly, it allocates more funds to urgently needed early diagnostic tools, since in the first three weeks after infection, the standard tests only detect Lyme disease 29 to 40 percent of the time.

For an overview of the devastating impact of poor testing and treatment options on Lyme patients, read the new LymeX publication, “The Health+ Lyme Disease Human-Centered Design.” To join the LymeX online community, go to: https://lymex.crowdicity.com/

Invisible International is a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and change projects. To donate or to learn more about our many programs to reduce the impact of tick-borne illness, visit the website: https://invisible.international

How LymeTV is crushing those evil ticks seeking world domination

Tick bites woman. Woman bites back, by launching LymeTV, a media foundation that aims to end the ignorance surrounding tick-borne diseases.

While Adina Bercowicz was applying to graduate school, she began experiencing a variety of mysterious symptoms, including crushing fatigue, joint aches, and frequent mind-blowing headaches. She thought it would go away in a few days, but it didn’t. And for the next two years, she kept visiting doctors, searching for relief from her forever illness. Her symptoms progressed into debilitating chronic pain and a significant cognitive decline, so bad that she couldn’t even recognize her own car.

She had to put her education and life on hold. That is, until a Miami-based physician recognized that Adina’s symptoms were similar to those of her daughter who was suffering with Lyme disease. To explore that possibility, her medical team extracted spinal fluid and a pathologist discovered that it was teeming with Borrelia burgdorferi, the corkscrew-shaped, tick-borne bacterium that causes Lyme disease. It was direct evidence that she had Lyme encephalitis, brain inflammation that can cause memory and concentration issues, headache, mild depression, irritability, fatigue, or excessive daytime sleepiness.

But despite years of treatment, she couldn’t get better, and she ultimately ended up in the intensive care unit to undergo allergy desensitization to ceftriaxone, the best antibiotic for treating her brain infection. Around the same time, it was discovered that the tick or ticks that bit her had also transmitted other pathogens along with Lyme, including the Rocky Mountain spotted fever bacterium, and babesia and anaplasma, two microbes that infect human blood cells.

She was left aghast with the question, why did it take five years to figure this out and get treated? Although her treatment relieved many of her major symptoms, she was left with the permanent damage caused by years of an unchecked infection.

“A tick bite can kill you,” says Adina, to those who think that these diseases are easy to diagnose, treat, and cure.

Adina’s frustration with the medical community’s lack of knowledge about tick-borne diseases inspired her to start LymeTV.org. This foundation aims to educate physicians and the public on the latest tick-borne disease science through TV commercials, a documentary, community events, and prevention resources targeting school-aged children. Yan Zelener, PhD, with degrees from MIT and Columbia University, is LymeTV’s director of science and research and Adina’s husband.

LymeTV’s latest project, the Tick Jedi School Health Program, features a fun, interactive, educational cartoon that teaches kids about tick avoidance, tick checks, and Lyme disease basics. (The animation’s screenwriters have written episodes for Disney Channel and Disney—ABC Television Group, ensuring an age-appropriate learning experience.) Designed for children from five to twelve years old, the program also comes with prevention posters and workbooks that engage kids with fun educational activities.

This project was a top-five winner of the Invisible International 2020 Hackathon, which was focused on creating education and awareness around tick-borne illness. Hackathon funding is helping LymeTV with outreach to schools and summer camps.

Tick-borne illnesses like Lyme disease affect children more than any other age group, yet only about 1 in 10 check for ticks after playing outside. Lyme disease is the fastest growing vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. If ticks take a blood meal undetected, they can transmit other dangerous bacteria and viruses to humans and pets, including the Babesia parasite, the Rocky Mountain spotted fever bacterium, and the Powassan virus. Prevention through tick checks and avoidance is the best way to stay safe.

LymeTV is a 501(c)(3) a nonprofit foundation based in Portland, Maine, focused on reducing the incidence of dangerous tick-borne diseases. Learn more about the Tick Jedi program and try out their interactive cartoon here: https://tickjedi.com

Schools, camp, and other organizations can register here for the program’s complete set of educational resources.

Invisible International is a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and change projects, such as the Lovell family-sponsored Hackathon that helped fund the Tick Jedi program. To donate or to learn more about our many programs to reduce the impact of tick-borne illness, visit the website: https://invisible.international

Infectious new dance helps kids check for Lyme-infected ticks

A children’s songwriting duo has created a catchy new dance-jingle that makes tick checks fun and easy, potentially reducing the incidence of dangerous tick-borne diseases in kids.

Tick-borne illnesses like Lyme disease affect children more than any other age group, yet only about 1 in 10 check for ticks after playing outside. To encourage kids to do more and better tick checks, comedic songwriters “Louis and Dan and the Invisible Band” created a “viral” song-and-dance routine to help kids remember to check for creepy-crawly ticks in their favorite hiding places.

Sponsors of this project, PA Lyme Resource Network and Invisible International, have also organized an educational campaign around the dance called the #TickCheckChallenge. (This project was developed for the Invisible International 2020 Hackathon, which was focused on creating education and awareness around tick-borne illness.) To help spread the word about the importance of tick checks, they’re encouraging people to record their own TikTok-style interpretations of the dance, then share them on social media, following the instructions at https://palyme.org/tick-check-challenge/

Lyme disease is the fastest growing vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. If ticks take a blood meal undetected, they can transmit other dangerous bacteria and viruses to humans and their pets, including the Babesia parasite, Rocky Mountain spotted fever, and the Powassan virus. Initial symptoms are often hard to detect, mimicking those of the flu or Covid-19 — fever, chills, headache, and aches. Prevention through tick checks is the best way to stay safe.

PA Lyme Resource Network is a 501(c)(3) nonprofit foundation with a mission to reduce the suffering of Lyme and tick-borne disease patients via education, prevention, patient support, and advocacy. Their signature “Dare 2B Tick Aware Program” has provided 300+ tick education seminars to date, as well as an informative suite of prevention materials made available to the public.

Invisible International is a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and change projects, such as the Lovell family Hackathon that funded the Tick Check Challenge. To donate or to learn more about our many programs to reduce the impact of tick-borne illness, visit the website: https://invisible.international

How to post your videos:

Learn how to create your own video here: https://palyme.org/tick-check-challenge/

Post your video to your social media channels, tagging three friends, and put #TickCheckChallenge on every post so that we can share your efforts to raise awareness.  

To listen to more health-education songs by Louis & Dan and the Invisible Band, go to www.louisdaninvisibleband.com.

Image: kohei_hara @iStock, Video: Chris Flicek

Sign up for our

Newsletter

For health news, free courses, Invisible updates, resources, and more