Announcing Invisible’s Clinical Guide for Lyme Neuroborreliosis

From the Desk of Dr. Nev Zubcevik
A letter to our supporters from Dr. Nev Zubcevik, Chief Medical Officer, on a new clinical tool that will help doctors better understand & care for patients with neurological Lyme disease.

Dear community members and supporters,

As a physical medicine and rehabilitation physician, my primary focus is on identifying the root cause of my patients’ illnesses. Only by addressing the underlying cause can we effectively rehabilitate our patient’s injuries. Throughout my years of practice, I have witnessed the devastating impact of untreated or under-treated Lyme disease infection on patients’ nervous systems. This destructive effect severely impairs their cognitive abilities, physical functioning, and overall quality of life. Our team at Invisible International has developed a clinical guide to assist clinicians in the recognition of neurological Lyme disease symptoms and subsequent diagnostic, testing, and treatment strategies to help diagnose and treat patients faster. We are grateful to donors like you who help fuel our work to pave the way for making sure every physician is a Lyme+ knowledgeable physician. To partner with us in developing and disseminating our education to physicians, please consider a tax-deductible donation today.

Lyme patients are at an increased risk of suicide

My deepest concern as a physician is that Lyme patients are extremely vulnerable as a population. Research has shown that Lyme patients face a heightened risk of suicide, primarily because their neurological injury remains largely invisible, causing immense suffering (Fallon et al., 2021). Understanding the clear mechanism of injury caused by the Lyme bacterium is crucial in explaining this invisible damage. By raising awareness among physicians and healthcare professionals about this mechanism, we can approach these patients with a clearer path to diagnosis and treatment.

Our study shows damage to the nervous system

In 2019, our team at Harvard conducted research and published the study “Association of Small Fiber Neuropathy and Post Treatment Lyme Disease Syndrome,” where we investigated the potential link between small fiber neuropathy (SFN) and post-treatment Lyme disease syndrome (PTLDS). Our findings provided both a biomarker of injury and a testing protocol that other physicians can use to objectify their patients’ neurological injury caused by Lyme disease.

In the study, we explored ten participants with a history of PTLDS, and through skin biopsies, we discovered evidence of SFN in all cases. Specifically, nine participants displayed sensory SFN with abnormal epidermal nerve fiber density, and seven individuals exhibited severe SFN. We observed autonomic dysfunction in all PTLDS participants. Additionally, our study revealed reduced cerebral blood flow in all PTLDS patients, suggesting cerebral hypoperfusion.

Our findings suggest that SFN and related dysautonomia may serve as objective markers for PTLDS. The assessment of small fiber density and autonomic dysfunction using skin biopsies and reflex testing could be valuable in therapeutic trials and offer physicians a clearer understanding of PTLDS and its associated symptoms, including cognitive impairment and brain fog.

The mechanisms like direct cytotoxicity by the spirochete, neurotoxic mediators during host-pathogen interactions, and triggered autoimmune reactions are likely to be involved in the pathogenesis of this neuronal injury.

The mechanism of neuronal injury in Lyme is clear

The article “The Pathogenesis of Lyme Neuroborreliosis: From Infection to Inflammation” by Rupprecht et al. (2008) is a crucial source of information that sheds light on the intricate mechanism of neuronal injury in Lyme disease. Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, can lead to neurological manifestations, including painful meningoradiculitis and cranial or peripheral neuritis. Understanding the pathogenesis of this condition is essential for effective management and treatment.

The infection process begins with the spirochetes entering the tick’s salivary glands during feeding and subsequently invading the host’s skin, leading to a local infection called erythema migrans. During the second stage of Lyme disease, the spirochetes can spread to various organs, including the central nervous system (CNS), resulting in neurological complications.

The spirochetes employ various strategies to evade the host’s immune system. They downregulate immunogenic surface proteins, such as OspA and OspC, to minimize their recognition by immune cells. Additionally, they express complement-neutralizing proteins and induce anti-inflammatory cytokines to suppress the host’s immune response. These mechanisms enable the spirochetes to establish infection and persist in the host.

Once the spirochetes enter the CNS, they encounter local immune cells, leading to the production of proinflammatory cytokines and chemokines. The chemokine CXCL13 plays a pivotal role in attracting B-lymphocytes into the cerebrospinal fluid (CSF), resulting in the production of borrelia-specific antibodies. This immune response, however, can also contribute to the neuronal injury.

The neurological dysfunction observed in Lyme neuroborreliosis may result from multiple factors. The spirochetes can directly adhere to neural and glial cells, causing cytotoxicity and inflammation in the surrounding tissues. Furthermore, they induce the release of neurotoxic substances, such as nitric oxide and quinolonic acid, exacerbating the damage. Additionally, the immune response may lead to an autoimmune reaction, with antibodies targeting neural antigens due to molecular mimicry, further contributing to inflammation and demyelination.

The demyelination process is particularly significant as it can disrupt nerve function and result in various neurological symptoms. Damage to the myelin sheath, the protective covering of nerve fibers, can lead to muscle weakness, numbness, tingling, and coordination difficulties.

What we are doing and how you can help

The mechanisms discussed, including immune evasion, inflammation, and demyelination, contribute to the complex clinical picture of this condition. Understanding these processes is crucial for developing targeted therapies to mitigate nerve injury and promote recovery in patients with Lyme neuroborreliosis. We must do better to educate the medical system about this mechanism of injury. With this information, the stigma will disappear, and the patients will be listened to and treated properly. Insurance companies will follow this by covering treatments.

Education leads to meaningful and lasting change. And we are paving the way.

Just in the last 6 months, we have educated physicians via the Montecalvo Education Platform for Vector-Borne Illness to impact over 750,000 patient visits. Our virtual courses have been viewed over 14,000 times. This work is only possible with your support: we rely on gifts from donors like you to make sure no Lyme patient is left behind. Your donations help us expand programming, send our team to conferences, and help us develop educational guides. Please consider making your tax-deductible donation today.

From all of us here at Invisible,
With gratitude,

Nevena Zubcevik, DO
Chief Medical Officer
Invisible International


References:

  1. Fallon BA, Madsen T, Erlangsen A, Benros ME. Lyme Borreliosis and Associations With Mental Disorders and Suicidal Behavior: A Nationwide Danish Cohort Study. Am J Psychiatry. 2021 Oct 1;178(10):921-931. doi: 10.1176/appi.ajp.2021.20091347. Epub 2021 Jul 28. PMID: 34315282.
  2. Novak P, Felsenstein D, Mao C, Octavien NR, Zubcevik N. Association of small fiber neuropathy and post treatment Lyme disease syndrome. PLoS One. 2019 Feb 12;14(2):e0212222. doi: 10.1371/journal.pone.0212222. PMID: 30753241; PMCID: PMC6372188.
  3. Rupprecht TA, Koedel U, Fingerle V, Pfister HW. The Pathogenesis of Lyme Neuroborreliosis: From Infection to Inflammation. Mol Med. 2008 Nov-Dec;14(11-12):205-12. doi: 10.2119/2007-00091.Rupprecht. PMID: 18787810; PMCID: PMC2270991.

From the Clinical Trenches

Dear community,

As you all are aware, the treatment of patients suffering from tick-borne diseases can be quite complicated. However, a research article published in Antibiotics (June 2023) by Trouillas and Franck (1) offers an encouraging method for addressing the severe neurological symptoms associated with these diseases. They observed full recovery in seven out of ten patients with severe neurological Lyme disease, marked by paresis. Importantly, these patients stayed healthy even two years after recovery.

Patients in this study had been dealing with their illnesses for periods ranging from six months to seven years. None had been treated with antimicrobials. The researchers scrutinized several recognized, but under-researched, problems within the field.

Their findings contradicted the existing recommendation to treat neuroborreliosis with 21 days of a single drug, Ceftriaxone. Out of 16 treatment studies focused on patients with Neurologic Lyme, only 15 individuals could be diagnosed as having late-stage Lyme neuroborreliosis. Interestingly, studies employing long-term antibiotics showed better outcomes for patients (2,3,4).

A key aspect of their research was the consideration of patients suffering from multiple tick-borne diseases simultaneously, such as Borrelia, Babesia, Bartonella, and Anaplasma.

Patients were treated until their neurological symptoms disappeared. If symptoms recurred after a period of remission, treatment was resumed and continued until remission could again be achieved.

In line with this, the researchers treated patients for Lyme disease (Borreliosis) and other co-infections such as Babesiosis, Bartonellosis, and Anaplasmosis, if a patient’s symptoms and lab tests suggested the presence of these diseases. They used a combination of clinical judgment and lab testing to guide their treatment decisions. They also referred to studies suggesting the persistence of these infections, which justified the need for prolonged antimicrobial treatment.

Treatment continuation was decided based on the patient’s clinical response, emphasizing a patient-centric approach. The results were significant: seven out of ten patients regained their health, allowing them to resume societal and family roles, without previous discomfort. On average, treatment duration needed to achieve this was 25 months. This study represents a promising development in the management of severe tick-borne diseases, although more research is needed to validate and apply these findings more broadly.

 


 

Help us fund the Tick Bytes Clinical Data Repository

Patients who suffer with tick-borne diseases need faster research results that translate to meaningful clinical interventions and better outcomes. A solution to this is Invisible’s Tick Bytes Clinical Data Repository. This is an initiative to organize clinical information from the ten best tick-borne disease physicians across the nation within a privacy-protected database, enabling researchers to analyze and publish best practices for treating patients.

With this precision medicine approach, more quality evidence will reach physicians, insurers, and the government, leading to better patient outcomes, insurance coverage, and a deeper understanding of tick-borne diseases.

Based on prior work by Dr. Nevena Zubcevik and Dr. Charlotte Mao at the Dean Center for Tick Borne Illness in Boston, it’s anticipated that it will take 12 months for database set-up, and 24 months for data collection, analysis, and publication. To move forward, all we need is funding from people like you. Please help us launch this important initiative.

References:

  1. Trouillas P, Franck M. Complete Remission in Paralytic Late Tick-Borne Neurological Disease Comprising Mixed Involvement of Borrelia, Babesia, Anaplasma, and Bartonella: Use of Long-Term Treatments with Antibiotics and Antiparasitics in a Series of 10 Cases. Antibiotics (Basel). 2023 Jun 7;12(6):1021. doi: 10.3390/antibiotics12061021. PMID: 37370340; PMCID: PMC10294829.
  2. Logigian EL, Kaplan RF, Steere AC. Successful treatment of Lyme encephalopathy with intravenous ceftriaxone. J Infect Dis. 1999 Aug;180(2):377-83. PMID: 10395852  DOI: 10.1086/314860
  3. Oksi, J.; Kalimo, H.; Marttila, R.J.; MariamaÃàki, M.; Sonninen, P.; Nikoskelainen, J.; Villanen, M.K. Inflammatory brain changes in Lyme borreliosis. A report on three patients and review of literature. Brain 1996, 119 Pt 6, 2143-2154. https://doi.org/10.1093/brain/119.6.2143
  4. Fallon, B.A.; Keilp, J.G.; Corbera, K.M.; Petkova, E.; Britton, C.B.; Dwyer, E.; Slavov, I.; Cheng, J.; Dobkin, J.; Nelson, D.R.; et al. A randomized, placebo-controlled trial of repeated IV antibiotic therapy for Lyme encephalopathy. Neurology 2008, 70, 992–1003. DOI: https://doi.org/10.1212/01.WNL.0000284604.61160.2d

New Massachusetts General Hospital study on important heart issues in Lyme disease patients

A Massachusetts General Hospital study that raises the awareness of possible cardiac involvement in early Lyme patients was recently published. This small study is the first to use data that measures a complex protein (troponin) to detect possible cardiac involvement in patients with early Lyme disease and with subclinical, or non-noticeable cardiac symptoms. Overall, 14.6% of the study subjects had elevated troponin T levels above the normal range. These findings were published in the March 2022 issue of Annals of Clinical & Laboratory Science and are explained in a new course from Invisible International, taught by first author Elizabeth Lee Lewandrowski, PhD, MPH, an Assistant Professor of Pathology at Harvard Medical School, a Faculty Researcher and Clinical Laboratory Scientist in Pathology at Massachusetts General Hospital, and Invisible International’s Research Director.

Troponin is a complex of three proteins (troponin T, I, and C) that regulate muscle contractions in the heart. When the heart is damaged, these proteins are released into the bloodstream, allowing clinicians to measure levels to determine the extent of heart damage. Both troponin T and I are detected and elevated in the blood  when the heart is negatively impacted by various conditions, including  infection, inflammation, or muscle damage. Therefore, this is potentially an important test for doctors to follow in the event of suspected cardiac involvement including subclinical cardiac involvement in patients with Lyme disease.

Previously, the Centers for Disease Control and Prevention reported that Lyme carditis occurs only in about 1% of Lyme disease cases (2008 to 2017). This newer study of 41 early Lyme patients used the high sensitivity troponin T test and found that 14.6% had elevated troponin T levels, suggesting that the heart is damaged in more early Lyme disease cases than previously realized. This finding should be brought to the attention of healthcare providers as it suggests cardiac involvement in early Lyme disease may be more common than previously realized. While there are many explanations for elevated troponin levels in these patients, including a systemic inflammatory response, this result raises the question that subclinical cardiac involvement may be more common than previously recognized. Further investigation is necessary to explore and validate the significance of this finding. 

Some of the heart conditions that troponin T tests can detect include electrical disruptions (AV block, most common in Lyme carditis), inflammation (myocarditis), swelling of the heart sac (pericarditis), inflammation of the inner lining and valves (endocarditis), problems with the pumping action (cardiomyopathy), and heart attacks (myocardial infarctions). Some of these conditions can be fatal, emphasizing the need for rapid diagnosis and treatment when Lyme carditis is suspected.

The Invisible Education Initiative, funded by the Montecalvo Foundation, provides free, accredited Continuing Medical Education (CME) courses that focus on vector-borne and environmental illness within a One Health framework. These courses are available to clinicians and the public. To donate to this initiative and to learn about Invisible International, please go here http://invisible.international/give.

Watch here: https://learn.invisible.international/courses/measurement-of-high-sensitivity-troponin-t-in-patients-with-early-stage-lyme-disease-possible-evidence-for-subclinical-cardiac-involvement/

New course on One Health strategies for diagnosing Lyme disease

If you’re a clinician looking for new evidence-based insights into diagnosing Lyme disease, this course is a good starting place. It begins with a brief overview of the One Health approach to combating vector-borne diseases. Then it applies this framework to Lyme disease, which accounted for 60% of all vector-borne diseases in the U.S. from 2004 to 2016.

Early Lyme diagnostic strategies are addressed by Elizabeth Maloney, MD, the Education Co-director at Invisible, a Minnesota family physician, and the founder/president of Partnership for Tick-borne Diseases Education, a nonprofit providing evidence-based education on tick-borne diseases. Dr. Malone reviews four cases that highlight symptom patterns to look for in diagnosing early Lyme, Lyme carditis, and cranial neuritis, which often presents as facial Bell’s Palsy. She also discusses the flaws inherent in current Lyme diagnostic tests.

Late-stage Lyme disease rehabilitation is covered by Nevena Zubcevik, DO, Chief Medical Officer of Invisible International, previously co-founder and co-director of the Dean Center for Tick Borne Illness at the Spaulding Rehabilitation Hospital, an affiliate of Harvard Medical School. Dr. Zubcevik emphasizes that Lyme diagnostics aren’t always reliable for late-stage Lyme, so she presents evidence-based symptom clusters that may help clinicians with diagnoses. To assess the nervous system inflammation that is characteristic of late Lyme, she recommends taking a punch biopsy to test for small fiber neuropathy, and PET brain scans to confirm the inflammation that is at the root of the memory deficits found in 74% of these patients.

In addition to this course, Invisible offers resources to help in clinicians in the diagnostic process. These include a General Symptom Questionnaire (GSQ-30) for assessing patient impairment; a health risk assessment tool that helps patients think about exposures to environmental, animal, and travel-related diseases that might be contributing to ill health; and an evidence-based symptom list for babesiosis, bartonellosis and (Lyme) borreliosis, all common tick-borne diseases.

Invisible International is developing courses and clinician tools like these to accelerate the movement of new research to frontline clinicians. We hope these anytime, anywhere courses will grow the pool of health-care providers who are experienced in the diagnosis and treatment of tick- and other vector-borne diseases. This means fewer patients will have to travel long distances and wait months for an initial appointment. Education heals.

The Invisible Education Initiative, funded by the Montecalvo Foundation, provides free, accredited Continuing Medical Education (CME) courses that focus on vector-borne and environmental illness within a One Health framework. These courses are available to clinicians and the public. To donate to this initiative and to learn about Invisible International, please go here http://invisible.international/give.

How education can bend the curve in the tick-borne disease epidemic

There’s a dire shortage of health-care providers who are experienced in the diagnosis and treatment of tick- and other vector-borne diseases. This means many suffering patients must travel long distances and wait months for an initial appointment, leading to worse patient outcomes. [1]

There are immense insurance and logistical barriers that discourage providers from taking on patients with tick-borne diseases. Some of these were identified in a 2022 survey-study of 155 clinicians from 30 states who treat Lyme patients. They included complexity of care (79%), the cognitive impairment of patients (57%), and frequent patient calls between scheduled appointments (49%). [1]

This shortage of trained providers is getting worse as the incidence of vector-borne diseases rises. The Centers for Disease Control reports that:

  • Diseases spread by mosquitoes, ticks, & fleas tripled in the U.S., 2004-2016.
  • Since 2004, 9 new pathogens spread by mosquitoes & ticks have been discovered.
  • 476,000 Americans are diagnosed with Lyme disease each year, in all 50 states.

Despite the alarming rise in these diseases, a 2023 study led by Cornell University, “Review of Continuing Medical Education in Tick-Borne Disease for Front-Line Providers,” found a “limited availability of continuing education for multiple life-threatening tick-borne diseases of increasing importance in the United States.” [2]

Invisible International is filling this educational gap by producing best-in-class Continuing Medical Education (CME) courses on vector-borne and environmental disease, available to anyone online for no cost. These courses cover prevention, diagnosis, and treatment of these disease.

What is CME?

Continuing Medical Education (CME) educational activities are classes, workshops, or conferences that increase the knowledge and skills of health-care providers, ensuring that they stay current on the latest medical research and best medical practices. Some states require that doctors, nurses, and other health professionals accrue a certain number of CME course credits each year to keep their medical licenses active.

 What is unique about its CME offerings?

Invisible has one of the largest online CME collections of vector-borne diseases available. The courses are delivered by some of the most knowledgeable experts in their respective fields, featuring topics like persistent Lyme disease, the Bartonelloses, Lyme disease treatment, and neuropsychiatric symptoms of tick-borne diseases. Our courses incorporate the One Health concept, a recognition that the health of humans, pets, and the environment are all intertwined.

What is CME accreditation?

CME courses can be developed by medical societies, universities, companies, or nonprofits such as Invisible International. For these activities to be counted towards annual CME totals, they must be approved by independent accreditation organizations. This ensures that the educational activities are relevant, practice-based, effective, based on valid content, and independent of commercial influence.

Is Invisible’s CME accredited?

Invisible International’s Continuing Medical Education (CME) platform is accredited by two governing bodies:

  • The Accreditation Council for Continuing Medical Education (ACCME) sets course development guidelines to ensure accurate, balanced, scientifically justified clinical-practice recommendations, all free of commercial bias.
  • The American Academy of Family Physicians (AAFP) reviews individual courses to ensure that they:
    • are relevant to family practice
    • are evidence-based
    • communicate the risks and benefits of clinical recommendations
    • evaluate a learner’s grasp of the material.

Physicians taking AAFP-approved courses can receive reciprocal continuing education credits from the American Medical Association, (AMA), the American Osteopathic Association (AOA), the College of Family Physicians of Canada (CFPC), and other health professional organizations.

The Invisible Education Initiative, funded by the Montecalvo Foundation, provides free, accredited Continuing Medical Education (CME) courses that focus on vector-borne and environmental illness within a One Health framework. These courses are available to clinicians and the public. To donate to this initiative and to learn about Invisible International, please go here http://invisible.international/give.

###

[1] Johnson LB, Maloney EL. Access to Care in Lyme Disease: Clinician Barriers to Providing Care. Healthcare. 2022; 10(10):1882. https://doi.org/10.3390/healthcare10101882

The authors of this study are Elizabeth L. Maloney, MD, a Minnesota family physician and Invisible’s education co-director; and Lorraine Johnson, JD, MBA, the Chief Executive Officer of LymeDisease.org and the principal investigator of its patient registry and research platform, MyLymeData.

[2] Malkowski AC, Smith RP, MacQueen D, Mader EM. Review of Continuing Medical Education in Tick-Borne Disease for Front-Line Providers. PRiMER. 2023;7:497812. Published 2023 Feb 2. doi:10.22454/PRiMER.2023.497812

Neuropsychiatric Lyme symptoms: A new masterclass

Invisible International has just released an important medical education course on neuropsychiatric symptoms associated with Lyme disease, with treatment recommendations for specific manifestations. The course is taught by Shannon Delaney, MD, MA, an assistant professor in the Department of Psychiatry and neuropsychiatrist at Columbia University Irving Medical Center.

A key section of the course reviews the latest evidence on Lyme disease persistence after standard treatments, useful in overturning the long-held belief that Lyme disease is always easy to treat and cure.

“It’s staggering,” said Dr. Delaney. “Months to years after the initial infection of Borrelia burgdorferi, patients with Lyme disease may have chronic encephalopathy, polyneuropathy, or less commonly, leukoencephalitis,” she said.

Other topics covered in this masterclass include:

  • The definition of Post-Treatment Lyme Disease Syndrome (PTLDS), as defined by the medical community.
  • Case studies that illustrate the unreliability of testing for neurological Lyme disease.
  • Immune system biomarkers associated with neurological Lyme disease.
  • A description of how the Lyme bacteria creates disease in humans.

Dr. Delaney also reviews a cohort study that analyzed the clinical data of 12,616 Lyme disease patients over 22 years. The study, a collaboration of Columbia University and the Copenhagen Research Centre for Mental Health, is believed to be the first large, population-based study examining the relationship between Lyme disease and psychiatric outcomes. The results are a wakeup call for those who think of Lyme as a disease of mainly rashes and swollen joints; the study found that patients who received a hospital diagnosis of Lyme disease—inpatient, outpatient, or at the ER—had a 28 percent higher rate of mental disorders and were twice as likely to have attempted suicide post-infection, compared to individuals without the diagnosis.

This course reinforces the need for physicians to consider mental health symptoms when developing treatment plans for tick-borne disease patients.

The Invisible Education Initiative, funded by the Montecalvo Foundation, provides free, accredited Continuing Medical Education (CME) courses that focus on vector-borne and environmental illness within a One Health framework. These courses are available to clinicians and the public. To donate to this initiative and to learn about Invisible International, please go here http://invisible.international/give.

Watch here: https://learn.invisible.international/courses/neuropsychiatric-symptoms-with-lyme-disease-tick-borne-illness/

New CME course on “Diagnostic Challenges in Lyme disease”

In Invisible’s latest medical education course, Monica Embers, PhD, associate professor of microbiology and immunology at the Tulane National Primate Research Center and a leading expert in Borrelia burgdorferi (Lyme) infections in non-human primates, discusses problems with the current two-tiered Lyme testing protocol and describes a promising new diagnostic approach that her lab is working on.

Most Lyme experts agree that the 30-year-old antibody testing approach that we use needs a serious overhaul. The tests don’t work well in the first few weeks after a tick bite because the immune system hasn’t yet produced measurable antibodies. And people who have the worst infections or compromised immune systems may have antibody levels too low to measure. These “false negatives” can lead to truly sick people being denied treatment and going on to become chronically ill.

After a brief overview on the clinical stages of Lyme disease and the two-tiered testing protocol, Dr. Embers goes deep on how immune system responses change during an infection and after treatment. Her strong recommendation: Start over with Lyme testing criteria using next-generation molecular detection equipment to define antibody profiles for all stages of Lyme disease, guided by a more statistically valid study design—because every positive Lyme case missed could result in a life lost to chronic disease.

Another must-see course from Dr. Embers is “Antibiotic efficacy for treatment of Lyme disease,” which presents emerging evidence from animal studies suggesting that the Lyme disease bacterium, Borrelia burgdorferi, is a clever trickster that uses multiple strategies to evade the immune system and survive long after an onslaught of the recommended course of antibiotics. And in her third course, “Chronic Infection and the Etiology of Dementia,” she lays out the evidence that the Lyme bacteria could be one possible cause of dementia.

The Invisible Education Initiative, funded by the Montecalvo Foundation, provides free, accredited Continuing Medical Education (CME) courses that focus on vector-borne and environmental illness within a One Health framework. These courses are available to clinicians and the public. To donate to this initiative and to learn about Invisible International, please go here http://invisible.international/give.

Watch here: https://learn.invisible.international/courses/diagnostic-challenges-in-lyme-disease/

Invisible’s Big Wins of 2022

As 2022 comes to an end, the team at Invisible International is taking a moment to reflect on and celebrate our top five achievements of the last year. Invisible was founded only three years ago by a team of passionate and experienced physicians and scientists who recognized the need for a unique approach to solving the challenges of tick-borne illness. This dynamic team remains united around a common mission: To solve the persistent problem of vector- and tick-borne diseases with collaborative, creative educational approaches. In 2022, Invisible officially adopted the One Health framework, which positions its mission within the nexus of climate, human, and animal health. With this change, Invisible has many more collaborators and tools to engage new partners on the challenges of tick-borne disease. Invisible has a lot more in store for 2023, but let’s take a moment to celebrate the wins of 2022!

Our 30+ medical education courses had 7,000 views and received industry accreditation

The Invisible Education Initiative, funded by the Montecalvo Foundation, received accreditation from the prestigious Accreditation Council for Continuing Medical Education (ACCME) for its library of 30-plus continuing medical education courses. (Individual courses are accredited by the American Academy of Family Physicians.) These free courses serve up the latest in research and clinical advice on vector-borne illness, delivered by some of the most knowledgeable experts in their respective fields.

Why it matters: There’s a shortage of experienced tick-borne disease clinicians, with many patients having to wait months and travel long distances for appointments. Our free, on-demand courses—which have been viewed by 7,000+ health-care providers, medical schools, and patients—will increase the number of informed health-care providers. The education platform’s ACCME validation will encourage more physicians to take these courses for credit and will make it easier to integrate these courses into medical school curriculums. These courses will save lives.

Our storytelling team launched a Bartonella education campaign that reached millions

Swamp Boy” — an article, video, and TikTok — tells the dramatic tale of a 14-year-old boy who suddenly experiences sudden-onset psychosis. The story follows his parent’s hellish journey into the medical system as they struggle to save their oldest son from permanent residency in a psychiatric ward. At the root of the teen’s medical problems was Bartonella henselae, a poorly understood stealth bacterium that causes cat scratch disease and disseminated Bartonellosis. This story was published through NowThis, which reaches 115+ million people and 60% of millennials (18-34) each month in the U.S. It was their #2 most read story in 2022 and was lauded by New York Times columnist Ross Douthat. The online story is backed up by a peer-reviewed case study and seven new medical education courses on Bartonellosis developed by members of our “Storytelling for Change” team.

Why it matters: This story is educating the public on common symptoms, testing strategies, and effective treatments for this misunderstood pathogen. It will help many sufferers shed the stigma associated with the mental health symptoms associated with these infections to seek treatment from Bartonella-aware physicians.

Our first “One Health” course is now featured on a CDC training website

Invisible is using the One Health problem-solving framework to reduce the impact of tick- and vector-borne diseases, which have worsened with climate change, ecosystem imbalances, and funding inequities. This year we released a new course taught by Cheryl Stroud, DVM, PhD, “One Health for Human Health Clinicians,” which helps clinicians view their most difficult patient diagnostic challenges through the eyes of a veterinarian and an academic researcher focused on environmental toxins. This course is featured on the CDC’s “Southeastern Center of Excellence in Vector Borne Diseases” training website.

Why it matters: The rise in vector-borne diseases is harming both humans and animals, yet veterinarians and physicians rarely share clinical wisdom on these common foes. Human clinicians can learn a lot from veterinarians on disease pattern recognition, diagnostic strategies, and prevention, and we’re trying to facilitate this transfer of knowledge through our courses.

Our online Hackathon brought global innovators together to propose solutions for connecting animal and human health experts

This year our Innovation Hackathon, funded by the Lovell Family Foundation, focused on enhancing communication between animal and human clinicians. During this One Health Day event, four winning teams received funding for proposals to develop 1) A social network for animal and human health professionals; 2) A comprehensive national review of childhood tick prevention education; 3) An AI-powered surveillance system for vector-borne diseases; 4) A novel tick-borne illness detection device

Why it matters: There are no easy ways for veterinarians, physicians, and public health officials from different countries to share emerging disease data and best practices. Yet diseases and epidemics don’t respect borders. We use our annual hackathons to encourage multidisciplinary teams from around the world to solve our toughest challenges in inventive, technology-driven ways.

We expanded our educational partnerships to Europe and are sharing content with other Lyme nonprofits and wellness websites

This year our curriculum team added our first international CME instructor, Jack Lambert, MD, PhD, a Professor of Medicine and Infectious Diseases at Mater and Rotunda hospitals, a University College of Dublin School of Medicine in Dublin, Ireland, and the founder of the Lyme Resource Centre in Scotland. As we release new courses, our storytelling team works to maximize visibility through content-sharing with the Lyme community and popular wellness websites. For example, this year, MindBodyGreen and LymeDisease.org co-published two important articles on diagnosing tick-borne diseases in adults and young children, reaching millions.

Why this matters: The rise of tick-borne diseases is an international problem that is getting worse with climate change and global travel. After we invest in the development of evidence-based courses, we strive to share this information as widely as possible through strategic partnerships. We will continue to grow our international outreach in the coming year.

If you’d like to see more of these types of projects, please consider making a donation, no matter the size, to Invisible International. With your donation we will be able to continue to pursue medical education, research, and community empowerment programs, all with the mission of alleviating the suffering caused by invisible illnesses.

Wishing you all a healthy holiday and a prosperous new year. We know that our success wouldn’t be possible without your support, and we look forward to improving the health of all in the coming year.

When a loved one dies of Lyme: Donating to BAL’s Research Biorepository

Donating the tissues of a loved one who dies of Lyme disease is one of the best ways to accelerate research into better diagnostics and treatments for tick-borne diseases, because sample acquisition is often the most expensive and time-consuming part of a research study. There are very few sources of prescreened human tissue available to researchers.

The Lyme Disease Biobank (LDB), run by Bay Area Lyme Foundation (BAL), offers the best program for facilitating tissue donations and for delivering these samples to qualified researchers. LDB works in partnership with two non-profits, the National Disease Research Interchange (NDRI) and MyLymeData.

The process goes like this: NDRI works with families on the completion of authorization/consent forms and medical histories, then manages the tissue collection. LDB funds the collection and sample storage, and qualifies researchers to receive samples. Families can also link donations to the deceased’s MyLymeData profile, providing researchers with valuable information on a person’s medical history and Lyme or tick-borne disease diagnoses and treatments.

Since the tissue bank was launched in 2018, more than 10 families have donated tissue from deceased loved ones, and over 1,100 blood and urine samples have been collected. Thus far, more than 70 projects have been approved to receive samples. These tissues are being sent to researchers to study infection and inflammation processes and markers, which will provide insights for improving future diagnostics and treatments.

To make this process less stressful on families, NDRI can work with families to create a donation plan. LDB recommends that the NDRI forms be completed as soon as possible in advance of an expected death by requesting them through NDRI’s website at https://ndriresource.org/lyme-disease.

There is someone at NDRI available 24/7/365 to answer questions and assist with shorter timelines. NDRI will determine if a collection site is nearby or will help families locate a pathologist through a mortuary or a nearby medical institution. You can donate from anywhere in the continental U.S.

For more information about tissue or organ donation, visit NDRI’s Lyme registration page, or call 800-222-NDRI (6374), option 5. If the donation is imminent, or if you need immediate assistance, please call the number above.

For general questions that are not time-dependent for collection, please email Liz Horn, PhD, MBI, Principal Investigator, Lyme Disease Biobank at info@lymebiobank.org.

For more information:

Lyme Disease Biobank

Lyme disease heightens risk of mental disorders, suicidality

A Columbia-led study advises physicians and patients to be aware of psychiatric symptoms, particularly the first year after diagnosis

In a new study, U.S. and Danish researchers report that patients who received a hospital diagnosis of Lyme disease—inpatient, outpatient, or at the ER—had a 28 percent higher rate of mental disorders and were twice as likely to have attempted suicide post-infection, compared to individuals without the diagnosis.

The study, a collaboration of Columbia University and the Copenhagen Research Centre for Mental Health, is believed to be the first large, population-based study examining the relationship between Lyme disease and psychiatric outcomes.

The research appears in the July 28 online edition of the American Journal of Psychiatry (link is external and opens in a new window)

“It is time to move beyond thinking of Lyme disease as a simple illness that only causes a rash,” said Brian Fallon, MD, MPH, a psychiatrist with the New York State Psychiatric Institute and Columbia University who is the lead author of the paper. “In addition to the risk of severe cardiac, rheumatologic, and neurologic problems, Lyme disease can cause severe mental health problems as well.”

Dr. Fallon, one of the foremost researchers of the neuropsychiatric effects of Lyme disease, is director of the Lyme and Tick-borne Diseases Research Center at Columbia. The team of investigators on the study includes Michael Benros MD, PhD, principal investigator; Trine Madsen, PhD, co-first author; and Annette Erlangsen, PhD, all psychiatric epidemiologists at the Research Centre for Mental Health.

Higher Rate of Death by Suicide

To conduct their study, the researchers analyzed the medical record diagnoses of nearly 7 million people living in Denmark over a 22-year period, comparing the mental health data of individuals after a hospital-based diagnosis of Lyme disease to the rest of the Danish population who had never had a Lyme diagnosis recorded in the national medical register.

Patients who had a history of mental disorder or suicidality prior to the Lyme disease diagnosis were excluded from the analysis.

The analysis revealed that in addition to patients with Lyme disease being at greater risk of mental disorders and suicide attempts, they also had a 42 percent higher rate of affective disorders, such as depression and bipolar disorder, and a 75 percent higher rate of death by suicide than those without the diagnosis.

Additionally, having more than one episode of Lyme disease was associated with a higher rate of mental disorders, affective disorders, and suicide attempts.

Half a Million People Treated for Lyme Disease Each Year

Each year nearly half a million people in the United States are diagnosed and treated for Lyme disease, also known as Lyme borreliosis, caused by a bacterium carried by deer ticks and transmitted to humans through their bite. The majority of cases have been reported in the northeastern, mid-Atlantic, and north-central states, but the geographic range where ticks and tick-borne diseases are found continues to expand.

Although most cases can be cured with a two- to four-week course of oral antibiotics, 10-20 percent of patients may suffer with symptoms of pain, fatigue, or difficulty thinking that last for months to years after treatment.

Several studies have pointed to a connection between Lyme disease and cognitive disorders months to years after antibiotic therapy or in people with untreated infections. In severe cases, individuals with late-stage Lyme disease may experience impaired concentration, irritability, memory and sleep disorders, and painful nerve dysfunction.

Dr. Michael Benros emphasizes that most people do not develop severe mental health issues after Lyme borreliosis. During the study period, only 7 percent of the nearly 13,000 individuals with a hospital diagnosis of Lyme disease followed up with hospital clinicians complaining of symptoms subsequently diagnosed as mental disorders.

Clinicians and Patients Should Be Aware of Risk

But findings of the study, the researchers said, are emblematic of a trend in Lyme disease cases that should not be overlooked. The Danish medical registry includes only psychiatric diagnosis made in a hospital setting – not by clinicians in communities – and it is likely that the number of individuals with new onset mental health problems following infection is much higher.

“This nationwide study confirms the association between Lyme disease and psychiatric disorders,” Dr. Benros said. “Treating clinicians and patients should be aware of an increased risk of mental health problems, particularly during the first year after a severe Lyme disease infection, and if mental health issues arise, patients should seek treatment and guidance. “

The study, “Lyme Borreliosis and Associations with Mental Disorders and Suicidal Behavior: A Nationwide Danish Cohort Study,” was funded by the Global Lyme Alliance, Inc.