When a loved one dies of Lyme: Donating to BAL’s Research Biorepository

Donating the tissues of a loved one who dies of Lyme disease is one of the best ways to accelerate research into better diagnostics and treatments for tick-borne diseases, because sample acquisition is often the most expensive and time-consuming part of a research study. There are very few sources of prescreened human tissue available to researchers.

The Lyme Disease Biobank (LDB), run by Bay Area Lyme Foundation (BAL), offers the best program for facilitating tissue donations and for delivering these samples to qualified researchers. LDB works in partnership with two non-profits, the National Disease Research Interchange (NDRI) and MyLymeData.

The process goes like this: NDRI works with families on the completion of authorization/consent forms and medical histories, then manages the tissue collection. LDB funds the collection and sample storage, and qualifies researchers to receive samples. Families can also link donations to the deceased’s MyLymeData profile, providing researchers with valuable information on a person’s medical history and Lyme or tick-borne disease diagnoses and treatments.

Since the tissue bank was launched in 2018, more than 10 families have donated tissue from deceased loved ones, and over 1,100 blood and urine samples have been collected. Thus far, more than 70 projects have been approved to receive samples. These tissues are being sent to researchers to study infection and inflammation processes and markers, which will provide insights for improving future diagnostics and treatments.

To make this process less stressful on families, NDRI can work with families to create a donation plan. LDB recommends that the NDRI forms be completed as soon as possible in advance of an expected death by requesting them through NDRI’s website at https://ndriresource.org/lyme-disease.

There is someone at NDRI available 24/7/365 to answer questions and assist with shorter timelines. NDRI will determine if a collection site is nearby or will help families locate a pathologist through a mortuary or a nearby medical institution. You can donate from anywhere in the continental U.S.

For more information about tissue or organ donation, visit NDRI’s Lyme registration page, or call 800-222-NDRI (6374), option 5. If the donation is imminent, or if you need immediate assistance, please call the number above.

For general questions that are not time-dependent for collection, please email Liz Horn, PhD, MBI, Principal Investigator, Lyme Disease Biobank at info@lymebiobank.org.

For more information:

Lyme Disease Biobank

Diagnosing young children with Lyme disease, advice from a pediatrician

Lyme disease affects children more than any other age group, but the young ones are often difficult to diagnose, especially before they’ve developed the vocabulary to describe how they’re feeling. To help parents recognize symptoms and prevent serious illness, I chatted with Charlotte Mao, MD, a pediatric infectious disease physician who trained at Harvard Medical School and Boston Children’s Hospital, and practiced at The Dean Center for Tickborne Illness, Spaulding Hospital, where she treated children with complex Lyme disease. She currently serves as the Curriculum Director for Invisible International’s Medical Education Initiative. Here are some frequently asked questions that she encounters in her practice.

Q: What do I do if I find a tick on my child?

If you see a tick embedded in your child, position a fine-tipped tweezer where the tick’s head meets the skin, then swiftly pull it straight out. Do not grasp, squeeze, or twist the tick’s body. Then place it in a plastic baggie with a small piece of damp paper towel. Wash the extraction area and your hands thoroughly with soap and water.

Consider sending the the tick to a testing lab, to identify the species and what microbes are inside of it. Because the current Lyme disease screening tests are unreliable in the first few weeks after a bite (it takes this long for humans to develop antibodies that can be measured), the results might provide your physician with useful information, especially if your child later comes down with symptoms. You can also go online to identify which tick species transmit various disease agents. Lyme disease is carried by blacklegged ticks, Ixodes scapularis in the Eastern United States and Ixodes pacificus in the West.

Some experts say that it takes at least 36 hours for an attached tick to transmit Lyme bacteria to a host, because this is the minimum time it takes for these bacteria to travel from a tick’s midgut to its saliva glands. However, transmission can happen in some cases with a shorter duration of attachment, specifically when bitten by a partially fed tick that already has Lyme bacteria in its saliva from a previous attachment. This occurs in about 5 to 10 percent of infected ticks, according to the Lyme bacteria discoverer, Willy Burgdorfer. Other tick-borne microbes, such as the potentially deadly Powassan virus, can be transmitted in as little as 15 minutes after tick attachment.

Time is of the essence in preventing serious tick-borne disease. So, in Lyme endemic areas, I personally advise parents to begin preventative antibiotic treatment before tick testing results come back, within 48 to 72 hours of attachment. Over the following month, closely observe a child for symptoms, such as an expanding skin lesion at the bite site, fever, malaise, headache, mild neck stiffness, aches/pains in muscles, or joints aches. If these develop, visit your pediatrician.

Q: How can I tell if my child has Lyme disease?

Early signs of Lyme disease include flu-like symptoms, such as fever (often mild), chills, head and neck pain, body aches (muscle and joint), malaise, and fatigue. (Unfortunately, these symptoms can be mistaken for irritability or viral infections, such as the flu or COVID. Check your child for a Lyme disease rash and don’t forget to check the scalp and skin-fold areas (groin, armpits, behind the knees, and ears). Not everyone gets the classic “bulls-eye” rash; an expanding rash without central clearing is more common. You can find some sample rash images on the Internet.

Other classic Lyme manifestations that can develop include a weakness or paralysis of facial muscles (Bell’s palsy); intense headaches, numbness, tingling, or weakness in extremities (neuropathy); eye and heart issues (especially cardiac rhythm abnormalities); and joint swelling or pain. Gastrointestinal symptoms, generally underappreciated as potential Lyme manifestations, may include nausea, abdominal pain, vomiting, loss of appetite, gastroparesis (stomach paralysis), and/or constipation.

Q: What are some of the late-stage Lyme symptoms?

Physical complications can involve the joints, nervous system, and eyes. Lyme arthritis most commonly involves  one or a few large joints, especially the knee, but can also affect the jaw (temporomandibular joint or TMJ), and, occasionally, small joints of the fingers and toes. Fatigue and aches/pains are common in late and early disease. Lyme disease can also cause behavioral or mood changes in children. Some children develop neuropsychiatric manifestations such as anxiety, depression, panic attacks, or obsessive-compulsive disorders. All these symptoms can come and go, and this can be confusing to a patient, their family, and teachers. But trust that you know your child best, and if you suspect Lyme, visit your pediatrician.

Q: What are the best Lyme disease tests?

A Lyme disease diagnosis ultimately needs to be made based on a multifaceted clinical evaluation with lab work viewed as supportive (or not), but not definitive. My diagnosis is based on a comprehensive medical history, a physical exam, and diagnostic testing for other potential explanations besides Lyme disease.

In testing, I prefer to use Lyme specialty labs that provide more diagnostic information than standard commercial labs. I particularly like Medical Diagnostics Laboratory (MDLab.com) for Lyme immunoblot testing. Immunoblots detect the presence of antibodies to specific proteins of a microorganism that develop  after a person has been exposed to a target infectious organism. Once detected, these antibodies  can be seen as dark bands on a blotting membrane or an imaging system. MDLab’s immunoblot reports include detection results for more than the 10 CDC-specified Lyme bands, and a photo of the patient’s actual blot with an objective optical density score grading the intensity of each detected band.  In some cases, fainter bands that do not meet the lab’s positivity threshold still might provide useful clinical information, increasing the suspicion of a past or present Lyme infection.

Q: What’s your treatment approach for young children?

As an infectious disease specialist, I typically see children who’ve already been treated by their pediatrician but have continuing symptoms after standard treatment courses. These more complex cases often require individualized management approaches.

If a child has not yet received an initial antibiotic course for Lyme disease, I start with recommended oral antibiotics—doxycycline, amoxicillin, or cefuroxime. (While doxycycline has traditionally not been prescribed for children under 8 years of age due to concerns of dental staining, studies have shown the risk of dental staining is much less with doxycycline than older tetracyclines. The American Academy of Pediatrics now says doxycycline can safely be used in children under 8 years for short durations, up to 21 days. Notably, doxycycline has long been the treatment of choice, regardless of age, for tick-borne rickettsial diseases such as Anaplasma, Ehrlichia, and Rocky Mountain Spotted Fever.

For acute central nervous system issues such as Lyme meningitis, I prescribe recommended intravenous antibiotics (typically ceftriaxone), which more effectively reaches therapeutic drug levels in the brain and central nervous system. I also use intravenous ceftriaxone for Lyme arthritis when symptoms haven’t resolved after two courses of oral antibiotics.

To avoid gut issues, I prescribe probiotics and monitor for adverse effects such as diarrhea.

Q: What if symptoms continue after treatment?

In the U.S., ticks are known to carry 18 or more disease-causing microbes, and sometimes concurrent infections can cause lingering symptoms, even after recommended Lyme disease treatment. A considerable degree of overlap exists among the nonspecific manifestations of Lyme disease and other tick-borne infections, but there are certain symptoms that are more prevalent for specific co-infections. I routinely test for Bartonella, Babesia, Anaplasma/Ehrlichia, and Borrelia miyamotoi if the child has not already had this testing done.

Bartonellosis, an under-recognized bacterial infection that can be transmitted by fleas, lice, or cat scratches/bites, can cause a multitude of symptoms, some of them overlapping with those of Lyme disease. These might include fever; swollen lymph nodes; an enlarged liver or spleen; skin “tracks” that may resemble striae or stretch marks; “evanescent” rashes that come and go; and neuropsychiatric symptoms, especially anxiety, panic attacks, anger/aggression/rage episodes, and obsessive-compulsive disorders. Other potential symptoms include tremors; jerky movements; sudden muscle weakness (e.g., “legs giving way”); a sensation of internal vibration; seizures; musculoskeletal pain, including in soles of the feet or shins (the latter is a reported feature of trench fever, caused by Bartonella quintana); abdominal pain; and eye issues (including uveitis and retinitis, both also seen with Lyme). Lab findings occasionally seen with Bartonella, all typically mild, include decreases in white blood cell count; increased eosinophils or monocytes; hemolytic anemia (rarely); increased C-reactive protein levels; and liver enzyme elevations.

Common babesiosis symptoms, caused by a parasite that infects red blood cells, include night or day sweats, fevers (can be high), chills, fatigue, malaise, hemolytic anemia and low platelets. Less common symptoms include headache, dry cough, shortness of breath (sometimes described as “air hunger”), nausea, abdominal pain, vomiting, and diarrhea.

The combination of low white blood cell and platelet counts make me suspect Anaplasma or Ehrlichia.

I always ask about factors that increase risk for repeat exposure/infection, such as outdoor hobbies (hiking, camping, gardening) and exposures to animals and blood-sucking bugs such as ticks, fleas, and lice. For the child with persistent symptoms after recommended treatment regimen(s), I also explore the possibility of nutritional/vitamin deficiencies or environmental toxic exposures, such as water-damaged buildings with mold contamination. Mold toxins or mycotoxins, produced by certain mold species, can complicate Lyme disease or co-infections by causing overlapping symptoms or negatively impacting treatment response.

The decision to administer additional antimicrobial therapy in patients with persistent or recurrent symptoms following standard treatment for Lyme disease is a controversial issue. According to treatment guidelines of most major medical societies, there is no good evidence that these persistent “post-treatment” symptoms are driven by an active infection that might benefit from additional antimicrobial therapy. The topic is too complex to cover here, but I’ll say simply that I do not agree with this blanket statement. The question of how best to treat this subgroup of patients is an area that requires more research and funding.

Q: I’m pregnant. Can I pass Lyme disease to my unborn child?

Borrelia infections can be transmitted from a pregnant mother to her infant. How frequently this occurs and the range of potential health risks for the infant/child have not been well-established. Studies to-date indicate significantly fewer adverse outcomes in treated compared to untreated pregnant women. This is another area that has been under-studied and requires more research attention and funding.

Q: I’m sending my kids to summer camp. Any advice on keeping them safe?

 I recommend pre-spraying clothing with permethrin to keep ticks away. This typically remains effective for six to eight washings. Have them pack insect repellents and don’t forget to teach them how to do tick checks.

Q: What resource can I give my child’s pediatrician to learn more about tick-borne illness?

Invisible International has created the first-ever continuing medical education platform that focuses on tick-borne illness. It is accredited by the American Academy of Family Physicians. Courses on this platform are available at no cost to physicians and other providers. Learn more and share this with your child’s pediatrician. Invisible’s Medical Education Initiative is supported by the Montecalvo Foundation.

###

New CME: A roadmap for treating neuro-Lyme patients

Dr. Nevena Zubcevik, co-founder of “The Dean Center for Tick Borne Illness” at Spaulding Rehabilitation Hospital/Harvard Medical School and Invisible International’s Chief Medical Officer, has spent a decade successfully treating patients with Central Nervous System (CNS) Lyme disease, aka “neuro-Lyme.” This week she shares her best clinical advice in the first of three medical education courses covering neuro-Lyme symptoms, diagnosis, and treatment strategies.

Unfortunately, the population of chronic neuro-Lyme patients has grown steadily over the last few decades, primarily because of systemic delays in early diagnosis and inefficacy of treatments. It’s sobering to realize that the standard screening test misses up to 89% of early infections (Steere et al, 2008). And after treatment, many patients reported new-onset patient-reported symptoms that increased or plateaued over time. At 6 months, 36% of these patients reported new-onset fatigue, 20% widespread pain, and 45% neurocognitive difficulties. (Aucott, 2013)

Dr. Zubcevik’s first course describes typical neuro-Lyme clinical presentations and discusses the mechanisms of nerve injury that are caused by Lyme disease bacteria. She emphasizes that these injuries are complex but treatable.

Based on her experience as a Harvard-trained, board-certified physical medicine and rehabilitation physician, Dr. Zubcevik stresses the importance of a multidisciplinary “all hands on deck” approach for these patients, many of whom have serious deficits in memory and brain functioning. She recommends that coordination of care —appointment management, home support, physician referrals, and insurance coverage—be an integral part of any treatment plan. She says that mental health support and an anti-inflammatory diet are also key to a patient’s recovery.

The next two courses will dive deeper into how the Lyme bacteria damages the neurological system and dysregulates the immune system. It then lays out detailed diagnosis and treatment strategies for physicians.

This free, accredited Continuing Medical Education (CME) is brought to you by the Invisible Education Initiative, funded by the Montecalvo Foundation.

###

Five simple ways to save someone from developing chronic Lyme disease

Whoever saves a life, it is considered as if he saved an entire world.
—Mishnah Sanhedrin 4:5; Yerushalmi Talmud 4:9

Anyone who has lived through a serious case of Lyme disease has probably experienced true despair and hopelessness. In the eyes of the medical system, you are invisible. Your case probably wasn’t sent to the CDC’s broken disease reporting system. The record of your suffering may not be acknowledged in the electronic medical records, because there were no diagnostic codes for chronic Lyme or its complications until January 2022. And finally, the “official” sources for Lyme disease information still say that the disease is easy to diagnosis, treat, and cure—the ultimate insult to those who have personally experienced the opposite.

Invisible International’s team is dedicated to righting these wrongs, by delivering the best diagnostic and treatment evidence to the frontlines of medical care. As we learn how to break through the walls of ignorance, we humbly offer up some ideas on how individuals can save lives from the plague of chronic Lyme disease and other tick-borne diseases.

Make your case count

Enter your Lyme story into the MyLymeData patient registry and research platform. LymeDisease.org’s survey tool tracks patient progress over time. By analyzing large amounts of patient data, researchers can see patterns that help identify gaps in care and treatments that work best.

Share our education courses with physicians

Invisible currently offers 25+ accredited medical education courses on tick- and vector-borne diseases, free to all. The courses cover important topics, such as neurological manifestations of Lyme, new evidence for persistent Lyme, and best practices for treating patients. Watch our medical education courses here and share them with physicians.

Distribute prevention resources to your community

PA Lyme offers a set of tick-bite prevention resources that can be shared with local schools, churches, and camps. Its “Dare 2B Tick Aware” program includes free webinars, educational flyers, and info on tick protection and testing.

Forward our newsletter to friends and family

Invisible’s newsletter delivers a steady stream of information on emerging research, promising treatments, new educational courses, and ways you can help others who’ve been bitten seek prompt, effective treatment.

Donate to our physician education program

One of Invisible’s top priorities is to integrate the Montecalvo physician education platform into the medical school curriculums in the U.S. and abroad. All donations, big or small, will help us make sure that the next generation of physicians learn about the latest strategies for preventing serious tick-borne disease complications and how to get patients better faster.

To read more about Invisible’s medical education, research, and community empowerment programs, visit https://invisible.international

Some good news for the Lyme disease community

This week Invisible International shines a light on recent progress in the Lyme disease world with 10 reasons to be thankful for the patient advocates and researchers dedicated to reducing the suffering of those with Lyme and other tick-borne diseases.

It’s easy to dwell on the negative with Lyme disease. Forty-seven years after discovery of the first case cluster in Lyme, Conn., there are still no reliable tests or effective vaccines on the market. Among those patients who are treated promptly, about a third go on to suffer from persistent symptoms.

But it’s important to keep things in perspective. Incremental progress is being made, albeit slowly. There’s a growing acknowledgment of the magnitude of the Lyme problem in the medical system, the government, and the media. New diagnostics, vaccines, and therapeutics are finally working their way out of basic research labs and into clinical validation studies. Invisible’s mission is to accelerate progress on all these fronts.

Here are 10 signs of progress for the Lyme disease community:

⁕ The CDC ups the annual Lyme disease cases to 476,000
After analyzing medical insurance claims data on Lyme disease in 2021, the U.S. Centers for Disease Control and Prevention upped their public-facing estimate of 300,000 annual cases to 476,000 per year. “Our results underscore the need for accurate diagnosis and improved prevention,” says the CDC. This updated estimate provides a larger “market size” that may incentivize commercial interests to develop better diagnostics, vaccines, and therapeutics.

⁕ New WHO ICD-11 Lyme disease diagnostics codes
The World Health Organization (WHO) added 15 new medical diagnostic codes for Lyme disease (aka borreliosis) complications, effective on January 1, 2022. Over time, these codes will provide patients with more avenues for medical insurance reimbursement and will enable researchers to better track and analyze Lyme disease complications, treatments, and outcomes. On the international front, the European Union is now requiring mandatory reporting of neuroborreliosis, a move that will help with research funding, prevention, and disease tracking.

⁕ More patient participation in the U.S. research agenda
Patients’ voices are starting to be heard. Since 2017, patient advocates in the HHS Tick-Borne Disease Working Group (TBDWG) have been effective in educating Congress and researchers on the urgent need for better diagnostics and treatments. MyLymeData, a patient information database managed by LymeDisease.org, has quantified time-to-diagnosis, common symptoms, and treatment outcomes, providing a big-data window into the needs of patients. Lastly, the Center for Lyme Action, founded in 2019, organized educational sessions within the US federal government to facilitate the passage of a new appropriations bill that nearly doubled the federal funding for Lyme Disease to $108M in FY21.

⁕ Strong evidence of active Lyme infections after treatment
A recent spate of research studies show that Lyme disease symptoms can persist after recommended treatment protocols, challenging the widely held belief that Lyme disease can always be cured with a short course of antibiotics. Acknowledgement that chronic Lyme is a real medical condition is the first step in justifying the development of more effective treatments for both early and late stages of the disease. A summary of this evidence can be found in here.

⁕ Recognition of the dangers of mixed tick-borne infections
When several university labs started gene sequencing and cataloging all the disease-causing microbes inside ticks, they discovered that polymicrobial infections transmitted through a single tick bite are far more common than previously thought. In the U.S., there are at least 18 disease-causing bacteria and viruses carried by ticks. And new studies have found that the standard U.S. Lyme testing doesn’t detect the newly recognized Lyme-like bacterial species spreading in the West and Midwest. This new information is another reason to design better screening tests and treatment guidelines for mixed tick-borne diseases. Read more here, here, and here.

⁕ Invisible International’s free medical education courses on tick- and vector-borne diseases
Invisible International’s physician education platform is the world’s first accredited curriculum focused on tick- and vector-borne diseases. These virtual courses are available at no cost to medical professionals and patients. Taught by leading experts in tick/vector-borne diseases, this platform is accelerating the movement of the latest diagnostics and treatment advice to the frontlines of medical care. New courses are added monthly and are accredited by the American Academy of Family Physicians for AMA credit. This effort is funded by the Montecalvo Family Foundation. To help Invisible integrate these courses into medical school curriculums across the U.S. and abroad, click here.

⁕ New therapeutic/treatment options on the horizon
A relatively new technology called “high throughput drug screening” enables researchers to place Lyme bacteria in an array of tiny wells and expose them to thousands of FDA-approved chemical compounds and drugs to see which ones are best at killing the microbes. The best and safest drug candidates are then retested in live mice, and, eventually, in humans. This process saves the time and money associated with large human clinical trials and speeds up the regulatory approval process. 
 
⁕ The LymeX Diagnostics Prize
The weak link in reducing the public health burden of tick-borne illnesses is the lack of fast, cheap, and accurate diagnostics. Lyme treatment is often delayed because the screening tests aren’t reliable in the first month after infection and not everyone produces or notices a bullseye rash. In the later stages of the disease, antibody testing can be unreliable in the sickest patients, those whose antibody production may be hobbled by concurrent infections or a weak immune system. LymeX, a public-private partnership, will be offering large prizes to incentivize the development of better Lyme diagnostics. This effort is part of the $25 million public-private partnership between the  U.S. Department of Health and Human Services (HHS) and the Steven & Alexandra Cohen Foundation. Invisible is joining the field-wide effort to support new diagnostic development by organizing a “Tick-borne Illness Diagnostics Development Incubator”, a yearlong collaborative forum designed to help bring these diagnostics solutions to the market faster. This effort is funded by the Lovell Family Healthcare Foundation.

⁕ Studies revealing the suicide/mental health risks of Lyme and co-infections
In a large retrospective study of nearly 7 million subjects, U.S. and Danish researchers report that patients who received a hospital diagnosis of Lyme disease—inpatient, outpatient, or at the ER—had a 28 percent higher rate of mental disorders and were twice as likely to have attempted suicide post-infection, compared to individuals without the diagnosis. Studies like these show that undertreated Lyme disease can lead to serious mental illness, and that it should be a differential diagnosis for certain patients with sudden-onset depression, suicidal thoughts, and other mental disorders. Read more here, here, and here.

⁕ A breakthrough in public awareness of the tick-borne disease problem
A growing number of mainstream journalists, writers, and professionals have gone public with their personal stories on the emotional, financial, and societal toll of tick-borne illnesses. This is an essential step in mitigating the social stigma, medical gaslighting, and myth that Lyme disease is easy to diagnose, treat, and cure. Notable new additions to this genre include “Chronic,” “The Invisible Kingdom,” “The Deep Places,” “What Lurks in the Woods,” and “Bitten” (my book). Invisible’s “Storytelling for Change” initiative aims to continue this momentum with a team of clinicians, researchers, and writers collaborating to produce mass media stories that explain emerging science and promote understanding of the suffering and social injustices laid on families dealing with invisible illness.

Help Invisible International do more to create positive change and scientific advancement for the Lyme disease community. Make a gift today.

For weekly updates on all things related to Lyme disease and other invisible vector-borne diseases, sign up for Invisible International’s newsletter here: https://invisible.international/newsletter/

Tulane researcher asks, “Could chronic Lyme contribute to Alzheimer’s dementia?”

In 2019, the late-great-science-writer Sharon Begley wrote an insightful article, “The maddening saga of how an Alzheimer’s ‘cabal’ thwarted progress toward a cure for decades.”

Begley’s reporting described how a powerful group of researchers became fixated on one theory of Alzheimer’s causation at the expense of all others. Their hypothesis: that Alzheimer’s cognitive decline was caused by neuron-killing, beta-amyloid protein clumps in the brain, and that if you dissolved the clumps, the disease process would stop.

As this theory hit a brick wall, Begley showed how the actions of the cabal harmed patients: “…for decades, believers in the dominant hypothesis suppressed research on alternative ideas: They influenced what studies got published in top journals, which scientists got funded, who got tenure, and who got speaking slots at reputation-buffing scientific conferences.”

Decades later, with no cure or effective drugs for Alzheimer’s dementia, some researchers are gathering evidence on a different causation theory — that dementia could be triggered by any number of chronic infectious diseases, and that amyloid plaques are a byproduct of an active infection, not the cause.

One of these researchers is Monica Embers, PhD, an associate professor of microbiology and immunology at the Tulane National Primate Research Center. She’s also the leading expert in identifying treatments that can eradicate Lyme bacteria infections in nonhuman primates, our closest mammalian relatives. In her new continuing medical education course, “Chronic Infection and the Etiology of Dementia,” she lays out the evidence that the Lyme bacteria could be one possible cause of dementia.

Her theory is this: When pathogens like the Lyme bacteria sneak past the blood-brain barrier, the immune system doesn’t allow protective killer cells from the entering the inflexible brain cavity, because resulting brain inflammation and swelling could lead to death. Instead, it encapsulates invading microbes with protein clumps, called beta-amyloid plaques or Lewy bodies, to stop the infection. As a person ages, the bodily processes that clean up this “brain gunk” slows, resulting in protein accumulation that impedes brain signaling and kills neurons.

In her 31-minute course, Dr. Embers describes the clinical symptoms of Alzheimer’s and Lewy body dementia, the impact on public health, genetic risks, and the list of infections associated with dementia-like symptoms.

The course also reviews a well-documented case study about a 54-year-old woman who was treated for the Lyme bacteria (Borrelia burgdorferi), developed dementia, then died 15 years after the initial infection. After death, B. burgdorferi was identified by PCR (DNA detection) in her brain and central nervous system (CNS) tissues, and by immunofluorescent staining of the bacteria in the spinal cord. (For more, read this peer-reviewed study.)

Dr. Embers and her study’s co-authors conclude, “These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS. Published in postmortem brain autopsy images and extensive pathology tests are a compelling reason to pursue this line of scientific inquiry.”

You can watch this free CME here

To help us launch our CME curriculum in hospitals and medical schools, donate here.

Invisible International’s Education Platform for Tick-borne Illness is funded by the Montecalvo Family Foundation. This platform currently offers 24 free, online Continuing Medical Education (CME) courses on the diagnostics, epidemiology, immunology, symptoms, and treatment of Lyme disease, Bartonellosis, and other vector-borne diseases. 

Do I Have Lyme Disease? A Physician Offers Advice.

Christine Green, MD, is a Stanford-trained, board-certified family medicine physician with 30 years of experience treating patients with tick-borne illness. In this Q&A, she discusses common symptoms and the diagnostic process for Lyme disease and other tick-borne diseases.

Q: I’m achy and tired all the time. Could I have Lyme disease?

The answer is yes. When a patient comes into my clinic for the first time, I take down their clinical history. If I suspect tick-borne disease, I ask if they’ve been exposed to ticks or tick habitats. Have they observed any rashes? The typical Lyme rash expands and is ring-like, usually not itchy or painful. If it’s under a person’s hairline, between the toes, or on the back of the body, it may not be noticed. At least 21% of Lyme patients, and probably more than 50%, never see a tick or a rash.

Early Lyme patients present with flu-like symptoms. Tick bites and resulting symptoms often occur in the summer, but in my California practice, Lyme season may overlap with the fall/winter flu season, confusing the diagnostic picture.

Next, I do a complete physical exam, with an emphasis on neurological deficits, such as loss of balance, tremors, facial asymmetry (Bell’s Palsy), and asymmetric reflexes. Then, I ask about the progression of their symptoms over time. In the first few months of Lyme disease, patients often experience malaise, fatigue, mild-to-severe headaches, nerve pain or tingling in the hands or feet, all in a relapsing-remitting course. In other words, the symptoms wax and wane.

If Lyme is diagnosed four or more months after symptom onset, the picture of the disease is different and variable. The longer between infection and diagnosis, the higher likelihood that more bodily systems have been invaded. Late-stage patients tend to have peripheral nerve symptoms that come and go, and symptoms that migrate to joints, muscles and/or nerves. Most patients with late Lyme have encephalopathy, inflammation of the brain that reduces blood supply in some areas. It can manifest as sleep problems, memory issues, word-recall problems, or difficulty reading or carrying out executive functions, the mental processes that enable us to plan, focus, remember instructions, and juggle multiple activities. For instance, a person who organizes large events might find that they have trouble completing and sequencing tasks. Things that used to take minutes, take hours.

Patients can also experience cardiac symptoms, including irregular heartbeats, chest pain, or dizziness. These patients often come in misdiagnosed with old age, depression, anxiety, or hypochondriasis (preoccupation with an imagined illness). Another presentation of this disease is chronic pain. The pain can be widespread and migrate around the body. These patients often come in with a diagnosis of fibromyalgia or new onset migraine headache.

Q: What’s the best test for diagnosing Lyme disease?

First and foremost, Lyme disease, as with any disease, should be diagnosed based on a clinical history and physical exam, not by test results alone. It’s important to note that the complex, conservative two-tiered testing criteria for “CDC positive cases” was developed for disease-tracking only, and it shouldn’t be used by physicians as the sole criteria for diagnosis or denying treatment to patients. What’s more, not all Lyme tests are created equal. The major labs typically look for only one strain of Lyme bacteria, the B31 strain of Borrelia burgdorferi. I prefer using specialized labs that test for multiple Lyme strains. Three of the labs I use are MDL, Galaxy, and Igenex.

One tick can inject multiple species of disease-causing microbes in single blood meal, so, based on symptoms, I sometimes test for other tick-borne infections. If a patient has night sweats, shortness of breath, stabbing chest pains, or autonomic symptoms (dizziness, nausea, vertigo, flushing), I’ll test for babesia, a malaria-like red blood cell infection. For a pinprick rash on the extremities and/or severe illness, I’ll test for spotted fever. Bartonellosis can present in many ways, including neuropathy, or neuropsychiatric symptoms, such as panic attacks, rages, psychosis, and obsessive-compulsive disorders.

 Q: Once diagnosed, how should you treat Lyme disease?

Research over the last three decades suggests that Lyme bacteria have multiple ways of evading the human immune system and that treating acute Lyme with 21 days of antibiotics fails approximately a third of patients. For that reason, I treat in two phases. For early Lyme, I treat with four weeks of doxycycline, amoxicillin, or cefuroxime antibiotics. I follow this up with four more weeks of drugs that prevent and eradicate “persister” forms of the bacteria. The persisters are drug-tolerant and can revert to an active infection once the antibiotics are stopped.

I treat late Lyme patients with severe degenerative neurologic or rheumatologic cases aggressively. As noted above, the very sick patients frequently have a mixture of tick-borne infections. For these patients, I choose a combination of oral or, when needed, intravenous antibiotics that target the pathogens known to be present.

 Q: Can you cure chronic Lyme disease?

In my practice, I’ve helped many of my tick-borne disease patients return to full health. Every patient is unique, with different genetics, co-morbidities, and co-infections. To me, the important thing is to evaluate clinical response and not to cut off treatment at some arbitrary end point. I assess symptoms at the beginning of each visit, then treat until symptoms improve or resolve. For any patient who is ill for an extended time, after the illness is controlled, I initiate rehabilitation protocols to help the person feel normal again. A patient must become fit to fully recover from a protracted state of ill health.

——

For a checklist of common Lyme disease symptoms or to find an experienced tick-borne disease physician, visit the Lymedisease.org website.

To learn more about diagnosing and treating vector-borne diseases, watch Invisible International’s online, evidence-based physician medical education courses.

Free CME course on neurological infections of Bartonella

Invisible International has released a new course on neurological and neuropsychiatric manifestations of Bartonella, a family of stealth bacteria best known for causing cat scratch disease and trench fever. This course discusses neurological presentations, diagnostic strategies, and emerging evidence showing a possible association between Bartonella and schizophrenia.

In the last few years, there has been a growing body of knowledge on the Bartonella family of bacteria. In this course, Edward Breitschwerdt, DVM, a leading expert on Bartonellosis in mammals, delivers the latest research and paints a disturbing picture of what can go wrong if a neurological Bartonella infection runs rampant in an immunocompromised or immunocompetent patient.

In humans, a Bartonella henselae infection (aka cat scratch disease) typically starts with a fever and swelling or lesions at the wound site, appearing three to 10 days after a bite or scratch from an infected mammal. Swollen lymph nodes show up one to two weeks later, and half of patients report headaches, lack of appetite, weight loss, vomiting, and, occasionally, a sore throat.

Five to 20 percent of those infected with cat scratch disease (i.e. an acute Bartonella henselae infection) exhibit severe symptoms, according to national insurance claims data published in the July 2020 issue of Emerging Infectious Diseases. These complications can involve the eyes, heart, liver, spleen, skin, musculoskeletal system and, the focus of this course, the nervous system.

Dr. Breitschwerdt believes that Bartonella is an underdiagnosed driver of many neurologic and neuropsychiatric diseases of unknown cause. He calls his fellow veterinarian workers “the canaries in the coal mine” for this emerging threat, citing a study that showed that 28% of the study’s veterinarian worker subjects were infected with the bacteria, based upon the detection of Bartonella DNA in their blood. He also reminds physicians to ask sick patients about their exposure to animals, bites and scratches, flea infestations and exposures to other known or suspected vectors for Bartonella transmission. Bartonella often occurs in families, infecting both pets and their human companions.

One of the most intriguing parts of this new course is the discussion of a recent study generated with his University of North Carolina research collaborators. The study found that people with schizophrenia were more likely than healthy volunteers to have Bartonella DNA in their bloodstream. In this study, 11 of 17 schizophrenia patients (65 percent, compared with 13 healthy controls) tested positive for Bartonella using the new “droplet digital enrichment blood culture PCR test” that his research team developed. Because this study was halted early due to the COVID-19 pandemic, a larger study is being planned at this time.

Edward Breitschwerdt, DVM, the course’s author, is the Melanie S. Steele professor of medicine and infectious diseases at the North Carolina State University College of Veterinary Medicine. He is also an adjunct professor of medicine at Duke University Medical Center and a diplomate in the American College of Veterinary Internal Medicine (ACVIM). As a leading expert on bartonellosis, he directs the Intracellular Pathogens Research Laboratory in the Institute for Comparative Medicine and co-directs the Vector Borne Diseases Diagnostic Laboratory at NCSU. This course is currently in review for CME credit by the American Academy of Family Physicians.

This project is funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates at: https://invisible.international/mission

Links to Bartonella courses: History of a hidden pandemic, Vectors and other modes of transmission, Reservoir hosts: Bats, cats, dogs, mice and men, Comparative infectious disease causation, Disease expression and host immunity, and Diagnosis of Bartonella species infections.

A historic case study on chronic Lyme disease

In this free medical education course, Kenneth Liegner, MD, a New York-based internist who has been treating tick-borne disease patients since 1988, discusses one of the earliest documented cases of chronic Lyme disease.

In 1987, Vicki Logan, a 39-year-old pediatric intensive-care-unit nurse from Goldens Bridge, New York, began suffering from headaches, fevers, fatigue, progressive paralysis, cognitive difficulties, and memory loss. Her doctors couldn’t figure out what was wrong, so she was left to cope with this debilitating chronic illness on her own.

Two years later, Dr. Kenneth Liegner of Pawling, NY, decided to take on Logan as a patient, in what may be one of the earliest and most scientifically validated case of chronic Lyme disease on record.

First, he tested Logan for Lyme disease, and all the tests came back negative. She had no history of tick bite or rash, but he knew that Logan lived in a hot spot for Lyme disease, so he decided to presumptively treat her with intravenous antibiotics. After three weeks of IV cefotaxime and four months of oral minocycline, he saw no improvement in her condition.

This started a long diagnostic process to figure out what was wrong with Logan. Along the way, Dr. Liegner consulted with experts in rheumatology, immunology, and neurology. Repeatedly he sent her cerebral spinal fluid (CSF) to pathologists, all of whom observed no bacterial infections. Finally, he sent a spinal fluid sample to the Centers for Disease Control (CDC), and, when the fluid was placed in a special BSK-II growth medium, spirochetes began multiplying. On Jan. 14, 1994, the CDC experts verified that this was the first “gold standard” proof that the Lyme bacterium, Borrelia burgdorferi, can survive in a patient after months of IV and oral antibiotic treatments.

Because Logan’s Lyme disease case was so well documented, her post-mortem tissues have been used in numerous research studies. These studies have shown that the Lyme bacteria had invaded her heart, liver, and brain. A more recent study suggests that Borrelia burgdorferi is able to withstand the administration of antibiotics by forming biofilm structures, protective clusters of microbes, polysaccharides, proteins, lipids, and DNA, around itself.

You can watch a first-hand account of this fascinating medical mystery story here.

***

This course is part of Invisible International’s Education Platform for Tick-borne Illness, funded by the Montecalvo Family Foundation. It currently offers more than 22 free, online Continuing Medical Education (CME) courses on the diagnostics, epidemiology, immunology, symptoms, and treatment of Lyme disease, Bartonellosis, and other tick-borne diseases.

Invisible International, a 501(c)(3) nonprofit organization, is committed to alleviating the suffering caused by invisible illnesses, through education, research, and community empowerment.

You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Borrelia persistence “Bench to Bedside” E-Colloquium, Antibiotic efficacy for treatment of Lyme disease, The impact of immune responses on diagnosis and treatment of Lyme disease

Lyme testing: The good, the bad, and the ugly

In the free medical education course, “Serologic testing in Lyme disease,” Elizabeth L. Maloney, MD, a Minnesota family physician and tick-borne disease educator, reviews published studies that evaluate current Lyme disease tests and discusses how these tests should be used in diagnosing patients.

I think many experts would agree with me on this point: The United States’ Lyme disease testing strategy is confusing, time consuming, subject to human error, and urgently in need of a technology upgrade. The quickest way to get up to speed on the good, the bad, and the ugly of Lyme testing is to watch Dr. Elizabeth Maloney’s accredited medical education course on the topic. With clarity and precision, Dr. Maloney explains the specificity, sensitivity, and accuracy of the most widely used Lyme tests, discussing how these tests should be used in a clinical setting and illuminating areas for improvement for the next generation of diagnostic approaches.

The underlying message of the lecture is that we can do better, and this is the reason Invisible International is launching a “Tick-borne Illness Diagnostics Development Incubator,” a yearlong collaborative forum designed to bring together teams of multidisciplinary innovators to look at diagnostic protocols, processes, and tests anew, with an eye to accelerating better diagnostic solutions. In this forum, we’ll bring together researchers, diagnostics companies, patient representatives, government representatives, and industry funders to brainstorm on ways to remove roadblocks to innovation. We’ll also feature lectures covering areas such as concept seed funding, getting through the regulatory pipeline, and fundamentals of low-cost diagnostics design.

This incubator is designed to complement the LymeX Tick-Borne Disease Innovation Accelerator, which will be offering prizes for the development for better early Lyme diagnostics. [Lyme X is funded with $25 million from the Steven & Alexandra Cohen Foundation and co-managed with the U.S. Department of Health and Human Services (HHS).] The Invisible Incubator is way to gain a competitive edge in this competition, by making it easy to engage with clinical, lab, and collaborators, and by participating in forums where past and emerging technologies will be discussed.

If you’d like to join the effort to improve Lyme diagnostics, please watch this educational primer on Lyme testing, then join us Saturday, October 30, 1:00 to 2:30 p.m. EST.* Registering at https://www.hack.invisible.international/ (*This presentation will be recorded and posted on Invisible’s website after the event.)

This continuing medical education course was funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Basic principles of diagnostic testing7 years of blood-based Lyme disease testingCase studies in early Lyme disease.

Photo credit: Pollyana Ventura, iStock

Sign up for our

Newsletter

For health news, free courses, Invisible updates, resources, and more