Diagnosing young children with Lyme disease, advice from a pediatrician

Lyme disease affects children more than any other age group, but the young ones are often difficult to diagnose, especially before they’ve developed the vocabulary to describe how they’re feeling. To help parents recognize symptoms and prevent serious illness, I chatted with Charlotte Mao, MD, a pediatric infectious disease physician who trained at Harvard Medical School and Boston Children’s Hospital, and practiced at The Dean Center for Tickborne Illness, Spaulding Hospital, where she treated children with complex Lyme disease. She currently serves as the Curriculum Director for Invisible International’s Medical Education Initiative. Here are some frequently asked questions that she encounters in her practice.

Q: What do I do if I find a tick on my child?

If you see a tick embedded in your child, position a fine-tipped tweezer where the tick’s head meets the skin, then swiftly pull it straight out. Do not grasp, squeeze, or twist the tick’s body. Then place it in a plastic baggie with a small piece of damp paper towel. Wash the extraction area and your hands thoroughly with soap and water.

Consider sending the the tick to a testing lab, to identify the species and what microbes are inside of it. Because the current Lyme disease screening tests are unreliable in the first few weeks after a bite (it takes this long for humans to develop antibodies that can be measured), the results might provide your physician with useful information, especially if your child later comes down with symptoms. You can also go online to identify which tick species transmit various disease agents. Lyme disease is carried by blacklegged ticks, Ixodes scapularis in the Eastern United States and Ixodes pacificus in the West.

Some experts say that it takes at least 36 hours for an attached tick to transmit Lyme bacteria to a host, because this is the minimum time it takes for these bacteria to travel from a tick’s midgut to its saliva glands. However, transmission can happen in some cases with a shorter duration of attachment, specifically when bitten by a partially fed tick that already has Lyme bacteria in its saliva from a previous attachment. This occurs in about 5 to 10 percent of infected ticks, according to the Lyme bacteria discoverer, Willy Burgdorfer. Other tick-borne microbes, such as the potentially deadly Powassan virus, can be transmitted in as little as 15 minutes after tick attachment.

Time is of the essence in preventing serious tick-borne disease. So, in Lyme endemic areas, I personally advise parents to begin preventative antibiotic treatment before tick testing results come back, within 48 to 72 hours of attachment. Over the following month, closely observe a child for symptoms, such as an expanding skin lesion at the bite site, fever, malaise, headache, mild neck stiffness, aches/pains in muscles, or joints aches. If these develop, visit your pediatrician.

Q: How can I tell if my child has Lyme disease?

Early signs of Lyme disease include flu-like symptoms, such as fever (often mild), chills, head and neck pain, body aches (muscle and joint), malaise, and fatigue. (Unfortunately, these symptoms can be mistaken for irritability or viral infections, such as the flu or COVID. Check your child for a Lyme disease rash and don’t forget to check the scalp and skin-fold areas (groin, armpits, behind the knees, and ears). Not everyone gets the classic “bulls-eye” rash; an expanding rash without central clearing is more common. You can find some sample rash images on the Internet.

Other classic Lyme manifestations that can develop include a weakness or paralysis of facial muscles (Bell’s palsy); intense headaches, numbness, tingling, or weakness in extremities (neuropathy); eye and heart issues (especially cardiac rhythm abnormalities); and joint swelling or pain. Gastrointestinal symptoms, generally underappreciated as potential Lyme manifestations, may include nausea, abdominal pain, vomiting, loss of appetite, gastroparesis (stomach paralysis), and/or constipation.

Q: What are some of the late-stage Lyme symptoms?

Physical complications can involve the joints, nervous system, and eyes. Lyme arthritis most commonly involves  one or a few large joints, especially the knee, but can also affect the jaw (temporomandibular joint or TMJ), and, occasionally, small joints of the fingers and toes. Fatigue and aches/pains are common in late and early disease. Lyme disease can also cause behavioral or mood changes in children. Some children develop neuropsychiatric manifestations such as anxiety, depression, panic attacks, or obsessive-compulsive disorders. All these symptoms can come and go, and this can be confusing to a patient, their family, and teachers. But trust that you know your child best, and if you suspect Lyme, visit your pediatrician.

Q: What are the best Lyme disease tests?

A Lyme disease diagnosis ultimately needs to be made based on a multifaceted clinical evaluation with lab work viewed as supportive (or not), but not definitive. My diagnosis is based on a comprehensive medical history, a physical exam, and diagnostic testing for other potential explanations besides Lyme disease.

In testing, I prefer to use Lyme specialty labs that provide more diagnostic information than standard commercial labs. I particularly like Medical Diagnostics Laboratory (MDLab.com) for Lyme immunoblot testing. Immunoblots detect the presence of antibodies to specific proteins of a microorganism that develop  after a person has been exposed to a target infectious organism. Once detected, these antibodies  can be seen as dark bands on a blotting membrane or an imaging system. MDLab’s immunoblot reports include detection results for more than the 10 CDC-specified Lyme bands, and a photo of the patient’s actual blot with an objective optical density score grading the intensity of each detected band.  In some cases, fainter bands that do not meet the lab’s positivity threshold still might provide useful clinical information, increasing the suspicion of a past or present Lyme infection.

Q: What’s your treatment approach for young children?

As an infectious disease specialist, I typically see children who’ve already been treated by their pediatrician but have continuing symptoms after standard treatment courses. These more complex cases often require individualized management approaches.

If a child has not yet received an initial antibiotic course for Lyme disease, I start with recommended oral antibiotics—doxycycline, amoxicillin, or cefuroxime. (While doxycycline has traditionally not been prescribed for children under 8 years of age due to concerns of dental staining, studies have shown the risk of dental staining is much less with doxycycline than older tetracyclines. The American Academy of Pediatrics now says doxycycline can safely be used in children under 8 years for short durations, up to 21 days. Notably, doxycycline has long been the treatment of choice, regardless of age, for tick-borne rickettsial diseases such as Anaplasma, Ehrlichia, and Rocky Mountain Spotted Fever.

For acute central nervous system issues such as Lyme meningitis, I prescribe recommended intravenous antibiotics (typically ceftriaxone), which more effectively reaches therapeutic drug levels in the brain and central nervous system. I also use intravenous ceftriaxone for Lyme arthritis when symptoms haven’t resolved after two courses of oral antibiotics.

To avoid gut issues, I prescribe probiotics and monitor for adverse effects such as diarrhea.

Q: What if symptoms continue after treatment?

In the U.S., ticks are known to carry 18 or more disease-causing microbes, and sometimes concurrent infections can cause lingering symptoms, even after recommended Lyme disease treatment. A considerable degree of overlap exists among the nonspecific manifestations of Lyme disease and other tick-borne infections, but there are certain symptoms that are more prevalent for specific co-infections. I routinely test for Bartonella, Babesia, Anaplasma/Ehrlichia, and Borrelia miyamotoi if the child has not already had this testing done.

Bartonellosis, an under-recognized bacterial infection that can be transmitted by fleas, lice, or cat scratches/bites, can cause a multitude of symptoms, some of them overlapping with those of Lyme disease. These might include fever; swollen lymph nodes; an enlarged liver or spleen; skin “tracks” that may resemble striae or stretch marks; “evanescent” rashes that come and go; and neuropsychiatric symptoms, especially anxiety, panic attacks, anger/aggression/rage episodes, and obsessive-compulsive disorders. Other potential symptoms include tremors; jerky movements; sudden muscle weakness (e.g., “legs giving way”); a sensation of internal vibration; seizures; musculoskeletal pain, including in soles of the feet or shins (the latter is a reported feature of trench fever, caused by Bartonella quintana); abdominal pain; and eye issues (including uveitis and retinitis, both also seen with Lyme). Lab findings occasionally seen with Bartonella, all typically mild, include decreases in white blood cell count; increased eosinophils or monocytes; hemolytic anemia (rarely); increased C-reactive protein levels; and liver enzyme elevations.

Common babesiosis symptoms, caused by a parasite that infects red blood cells, include night or day sweats, fevers (can be high), chills, fatigue, malaise, hemolytic anemia and low platelets. Less common symptoms include headache, dry cough, shortness of breath (sometimes described as “air hunger”), nausea, abdominal pain, vomiting, and diarrhea.

The combination of low white blood cell and platelet counts make me suspect Anaplasma or Ehrlichia.

I always ask about factors that increase risk for repeat exposure/infection, such as outdoor hobbies (hiking, camping, gardening) and exposures to animals and blood-sucking bugs such as ticks, fleas, and lice. For the child with persistent symptoms after recommended treatment regimen(s), I also explore the possibility of nutritional/vitamin deficiencies or environmental toxic exposures, such as water-damaged buildings with mold contamination. Mold toxins or mycotoxins, produced by certain mold species, can complicate Lyme disease or co-infections by causing overlapping symptoms or negatively impacting treatment response.

The decision to administer additional antimicrobial therapy in patients with persistent or recurrent symptoms following standard treatment for Lyme disease is a controversial issue. According to treatment guidelines of most major medical societies, there is no good evidence that these persistent “post-treatment” symptoms are driven by an active infection that might benefit from additional antimicrobial therapy. The topic is too complex to cover here, but I’ll say simply that I do not agree with this blanket statement. The question of how best to treat this subgroup of patients is an area that requires more research and funding.

Q: I’m pregnant. Can I pass Lyme disease to my unborn child?

Borrelia infections can be transmitted from a pregnant mother to her infant. How frequently this occurs and the range of potential health risks for the infant/child have not been well-established. Studies to-date indicate significantly fewer adverse outcomes in treated compared to untreated pregnant women. This is another area that has been under-studied and requires more research attention and funding.

Q: I’m sending my kids to summer camp. Any advice on keeping them safe?

 I recommend pre-spraying clothing with permethrin to keep ticks away. This typically remains effective for six to eight washings. Have them pack insect repellents and don’t forget to teach them how to do tick checks.

Q: What resource can I give my child’s pediatrician to learn more about tick-borne illness?

Invisible International has created the first-ever continuing medical education platform that focuses on tick-borne illness. It is accredited by the American Academy of Family Physicians. Courses on this platform are available at no cost to physicians and other providers. Learn more and share this with your child’s pediatrician. Invisible’s Medical Education Initiative is supported by the Montecalvo Foundation.

###

Some good news for the Lyme disease community

This week Invisible International shines a light on recent progress in the Lyme disease world with 10 reasons to be thankful for the patient advocates and researchers dedicated to reducing the suffering of those with Lyme and other tick-borne diseases.

It’s easy to dwell on the negative with Lyme disease. Forty-seven years after discovery of the first case cluster in Lyme, Conn., there are still no reliable tests or effective vaccines on the market. Among those patients who are treated promptly, about a third go on to suffer from persistent symptoms.

But it’s important to keep things in perspective. Incremental progress is being made, albeit slowly. There’s a growing acknowledgment of the magnitude of the Lyme problem in the medical system, the government, and the media. New diagnostics, vaccines, and therapeutics are finally working their way out of basic research labs and into clinical validation studies. Invisible’s mission is to accelerate progress on all these fronts.

Here are 10 signs of progress for the Lyme disease community:

⁕ The CDC ups the annual Lyme disease cases to 476,000
After analyzing medical insurance claims data on Lyme disease in 2021, the U.S. Centers for Disease Control and Prevention upped their public-facing estimate of 300,000 annual cases to 476,000 per year. “Our results underscore the need for accurate diagnosis and improved prevention,” says the CDC. This updated estimate provides a larger “market size” that may incentivize commercial interests to develop better diagnostics, vaccines, and therapeutics.

⁕ New WHO ICD-11 Lyme disease diagnostics codes
The World Health Organization (WHO) added 15 new medical diagnostic codes for Lyme disease (aka borreliosis) complications, effective on January 1, 2022. Over time, these codes will provide patients with more avenues for medical insurance reimbursement and will enable researchers to better track and analyze Lyme disease complications, treatments, and outcomes. On the international front, the European Union is now requiring mandatory reporting of neuroborreliosis, a move that will help with research funding, prevention, and disease tracking.

⁕ More patient participation in the U.S. research agenda
Patients’ voices are starting to be heard. Since 2017, patient advocates in the HHS Tick-Borne Disease Working Group (TBDWG) have been effective in educating Congress and researchers on the urgent need for better diagnostics and treatments. MyLymeData, a patient information database managed by LymeDisease.org, has quantified time-to-diagnosis, common symptoms, and treatment outcomes, providing a big-data window into the needs of patients. Lastly, the Center for Lyme Action, founded in 2019, organized educational sessions within the US federal government to facilitate the passage of a new appropriations bill that nearly doubled the federal funding for Lyme Disease to $108M in FY21.

⁕ Strong evidence of active Lyme infections after treatment
A recent spate of research studies show that Lyme disease symptoms can persist after recommended treatment protocols, challenging the widely held belief that Lyme disease can always be cured with a short course of antibiotics. Acknowledgement that chronic Lyme is a real medical condition is the first step in justifying the development of more effective treatments for both early and late stages of the disease. A summary of this evidence can be found in here.

⁕ Recognition of the dangers of mixed tick-borne infections
When several university labs started gene sequencing and cataloging all the disease-causing microbes inside ticks, they discovered that polymicrobial infections transmitted through a single tick bite are far more common than previously thought. In the U.S., there are at least 18 disease-causing bacteria and viruses carried by ticks. And new studies have found that the standard U.S. Lyme testing doesn’t detect the newly recognized Lyme-like bacterial species spreading in the West and Midwest. This new information is another reason to design better screening tests and treatment guidelines for mixed tick-borne diseases. Read more here, here, and here.

⁕ Invisible International’s free medical education courses on tick- and vector-borne diseases
Invisible International’s physician education platform is the world’s first accredited curriculum focused on tick- and vector-borne diseases. These virtual courses are available at no cost to medical professionals and patients. Taught by leading experts in tick/vector-borne diseases, this platform is accelerating the movement of the latest diagnostics and treatment advice to the frontlines of medical care. New courses are added monthly and are accredited by the American Academy of Family Physicians for AMA credit. This effort is funded by the Montecalvo Family Foundation. To help Invisible integrate these courses into medical school curriculums across the U.S. and abroad, click here.

⁕ New therapeutic/treatment options on the horizon
A relatively new technology called “high throughput drug screening” enables researchers to place Lyme bacteria in an array of tiny wells and expose them to thousands of FDA-approved chemical compounds and drugs to see which ones are best at killing the microbes. The best and safest drug candidates are then retested in live mice, and, eventually, in humans. This process saves the time and money associated with large human clinical trials and speeds up the regulatory approval process. 
 
⁕ The LymeX Diagnostics Prize
The weak link in reducing the public health burden of tick-borne illnesses is the lack of fast, cheap, and accurate diagnostics. Lyme treatment is often delayed because the screening tests aren’t reliable in the first month after infection and not everyone produces or notices a bullseye rash. In the later stages of the disease, antibody testing can be unreliable in the sickest patients, those whose antibody production may be hobbled by concurrent infections or a weak immune system. LymeX, a public-private partnership, will be offering large prizes to incentivize the development of better Lyme diagnostics. This effort is part of the $25 million public-private partnership between the  U.S. Department of Health and Human Services (HHS) and the Steven & Alexandra Cohen Foundation. Invisible is joining the field-wide effort to support new diagnostic development by organizing a “Tick-borne Illness Diagnostics Development Incubator”, a yearlong collaborative forum designed to help bring these diagnostics solutions to the market faster. This effort is funded by the Lovell Family Healthcare Foundation.

⁕ Studies revealing the suicide/mental health risks of Lyme and co-infections
In a large retrospective study of nearly 7 million subjects, U.S. and Danish researchers report that patients who received a hospital diagnosis of Lyme disease—inpatient, outpatient, or at the ER—had a 28 percent higher rate of mental disorders and were twice as likely to have attempted suicide post-infection, compared to individuals without the diagnosis. Studies like these show that undertreated Lyme disease can lead to serious mental illness, and that it should be a differential diagnosis for certain patients with sudden-onset depression, suicidal thoughts, and other mental disorders. Read more here, here, and here.

⁕ A breakthrough in public awareness of the tick-borne disease problem
A growing number of mainstream journalists, writers, and professionals have gone public with their personal stories on the emotional, financial, and societal toll of tick-borne illnesses. This is an essential step in mitigating the social stigma, medical gaslighting, and myth that Lyme disease is easy to diagnose, treat, and cure. Notable new additions to this genre include “Chronic,” “The Invisible Kingdom,” “The Deep Places,” “What Lurks in the Woods,” and “Bitten” (my book). Invisible’s “Storytelling for Change” initiative aims to continue this momentum with a team of clinicians, researchers, and writers collaborating to produce mass media stories that explain emerging science and promote understanding of the suffering and social injustices laid on families dealing with invisible illness.

Help Invisible International do more to create positive change and scientific advancement for the Lyme disease community. Make a gift today.

For weekly updates on all things related to Lyme disease and other invisible vector-borne diseases, sign up for Invisible International’s newsletter here: https://invisible.international/newsletter/

Tulane researcher discusses the evidence for persistent Lyme and promising new treatment strategies

Monica Embers, PhD, director of the vector-borne disease research center at Tulane University School of Medicine, summarizes evidence that suggests that Lyme bacteria can survive long after standard treatment protocols in a new online medical education course. She also discusses promising new treatment strategies for eradicating these bacteria.

Emerging evidence from animal studies suggest that the Lyme disease bacterium, Borrelia burgdorferi, is a clever trickster that uses multiple strategies to evade the immune system and survive long after an onslaught of the recommended course of antibiotics. This begs the question—Are our current Lyme treatment protocols all wrong?

In the accredited continuing medical education course, “Antibiotic efficacy for treatment of Lyme disease,” Monica Embers, associate professor of microbiology and immunology and a leading expert in investigating B. burgdorferi infections in a nonhuman primate model, summarizes current Lyme treatment protocols, key studies on antibiotic efficacy, and new strategies aimed at curing the infection.

“It’s clear from the cumulative evidence that persistent Lyme disease is a common occurrence and that we urgently need to explore more effective treatment strategies,” said Embers.

This new 32-minute course, part of Invisible’s Montecalvo Platform for Tick-Borne Illness Education, has been approved for 0.5 CME credit by the American Academy of Family Physicians. Each CME course includes a list of studies cited in the lecture.

One of the more surprising revelations in the lecture is that doxycycline, the drug of choice for treating adults with Lyme disease, doesn’t clear all of the causative bacteria. It only slows their proliferation, disrupting cell-wall creation as each forms a copy of itself by splitting into two. When the Lyme bacteria sense doxycycline, they shapeshift into spherical, dormant forms called persister cells, so they can wait out the chemical storm.

Dr. Embers backs up these claims with a series of thoughtfully designed experiments on nonhuman primates, our closest mammalian relatives. In one study, she treated five rhesus macaques with a 28-day course of doxycycline and five without. A year after the trial began, nine out of the 10 macaques, both treated and untreated, showed signs of ongoing illness and live Lyme spirochetes were isolated. In addition, those that received doxycycline had more bacteria in the brain.

The study’s conclusion: “We observed evidence of persistent, intact, metabolically-active B. burgdorferi after antibiotic treatment of disseminated infection and showed that persistence may not be reflected by maintenance of specific antibody production by the host.”

Simply put, treating with doxycycline didn’t seem to be a cure, and the Lyme bacteria appear to have ways of suppressing antibody production so that it can fly under the radar of the immune system.

Given this evidence, why does the medical establishment still recommend doxycycline as a front-line Lyme treatment? One reason is that doxycycline appears to be effective at most early infections, along with Rocky Mountain Spotted Fever and anaplasmosis, other serious tick-borne diseases that are often mistaken for Lyme disease in the early stages.

Embers also says that treatment study results may be skewed by the overuse of mice as test subjects. Mice are cheap, but they’re lousy stand-ins for humans. They’ve evolved alongside ticks to serve as a living holding tanks for the Lyme bacteria, so they don’t get as sick as humans when infected.

Lyme disease is the fastest vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. Approximately 10 to 20% of those treated with antibiotics go on to experience disabling long-haul symptoms, such as severe fatigue, joint/muscle pain, brain fog, and neurologic symptoms. There have been no human treatment studies published in over 20 years, and only 0.30% of the National Institutes of Health Lyme research budget has been focused on human treatment studies in the last five years (2015-2019).

At the end of lecture, Dr. Embers cited several lab studies (bacteria-in-a-dish) and animal studies showing that a cocktail of three antibiotics are highly effective in eradicating the Lyme bacteria. (This study from Johns Hopkins found that a combination of daptomycin, cefoperazone and doxycycline was effective in eradicating persister cells.) But of course, clinical trials are needed to validate these findings.

One of the ways Invisible International is working to accelerate the movement of treatment evidence to patient care is by launching Tick Bytes, a centralized clinical data repository that provides quality de-identified tick-borne illness patient data to researchers nationwide. Researchers can mine this data using advanced biostatistical methods to discover symptom profiles for mixed infections and treatment regimens that work. With this precision medicine approach, more quality evidence will reach physicians, insurers, and the government. This in turn will improve diagnostics and treatment options, leading to better outcomes, insurance coverage, and more sophisticated understanding of tick-borne diseases. Invisible is currently looking for funding for 10 data collection sites.

Dr. Embers’ CME course was funded by the Montecalvo Platform for Tick-Borne Illness Education, through Invisible International, a 501(c)(3) nonprofit foundation dedicated to reducing the suffering associated with invisible illnesses and social marginalization through innovation, education, and data-driven change projects. You can sign up to receive news and updates on our website.

Invisible International is a 501c3 that aims to solve challenges related to tick-borne illness through research and physician education. Its core team includes health care providers and scientists specializing in Infectious Disease, Internal Medicine, Family Medicine, Pathology, Pharmacy, Psychology, and Physical Medicine and Rehabilitation, as well as innovation and healthcare leaders.

Other related courses: The impact of immune responses on diagnosis and treatment of Lyme diseaseBorrelia persistence “Bench to Bedside” E-ColloquiumPersistent Lyme disease

Image credit: Hailshadow at iStock

Harvard study identifies symptom clusters in Lyme patients with persistent symptoms after treatment

retrospective study of 270 post-treatment Lyme patients identified the most debilitating neurological symptoms, paving the way for future studies on root causes of disease and better treatments.

The largest study to-date characterizing ongoing symptoms [1] of Lyme patients after antibiotic treatment has been published by a group of investigators at Harvard-affiliated hospitals and Invisible International, a non-profit organization. They also examined the relationship between symptom severity and perceived disability, identifying five of the most debilitating symptom categories — fatigue, cognitive deficits, neuropathy (nerve numbness or weakness in the extremities), migraine headaches, and mood disorders.

The study lays a scientific foundation for future research that will help the growing ranks of post-treatment Lyme patients suffering from lingering symptoms. Lyme disease is the fastest vector-borne illness in the United States, with an estimated 476,000 new cases a year, according to the Centers for Disease Control. Approximately 10 to 36% [2] of those treated with antibiotics go on to experience disabling long-haul symptoms, such as severe fatigue, joint/muscle pain, cognitive problems, and neurologic symptoms.

Patient impairment was assessed through medical chart reviews of 270 individuals who had been treated for Lyme borreliosis through the Dean Center for Tick-Borne Illness at Spaulding Rehabilitation Hospital Boston, a Harvard affiliate, between 2015 and 2018. Symptom and disability data was also collected through scientifically validated questionnaires. Symptom clusters were defined as two or more symptoms occurring together, indicating that they might share the same triggering mechanism. This approach, used in other chronic conditions, such as cancer and inflammatory bowel disease, helps guide researchers in identifying root causes and better treatment strategies.

“This study is an important first step in figuring out why these patients aren’t getting better,” said Dr. Nevena Zubcevik, DO, the first author on the study and the former co-director of the Dean Center for Tick Borne Illness. “Going forward, we’re taking what we’ve learned to set up a multi-institutional clinical data repository that will provide high quality, de-identified tick-borne illness patient data to any interested researcher.”

To expedite the discovery of clinical treatments for patients suffering with chronic tick-borne illness, Dr. Zubcevik is now leading the Tick Bytes Clinical Data Research Platform through Invisible International, in her role as Chief Medical Officer. The resulting open-source data would enable researchers to access prospectively acquired clinical and laboratory data, as well as possible biorepository specimens, on a large group of well-defined pediatric and adult patients with complex Lyme disease. This repository would also collect data on mixed infections and/or environmental/toxic exposures, influences that often worsen the outcomes of these patients. Using this precision-medicine approach, more quality evidence will reach physicians, insurers, and government. This, in turn, will improve diagnostics and treatment options, leading to better outcomes, insurance coverage, and government funding. Invisible is currently raising funds to launch 10 data collection sites at research institutions, community clinics, and hospitals across the nation.

Invisible International, a 501(c)(3) nonprofit organization, is dedicated to reducing the suffering and social marginalization associated with invisible illnesses through innovation, education, and data-driven change projects. Invisible’s core team includes board-certified health-care providers in Infectious Disease, Internal Medicine, Family Medicine, Psychiatry, Pharmacy, Pathology, and Physical Medicine and Rehabilitation, many trained at or are affiliated with top-tier universities such as Harvard, Stanford, MIT, Brown, UC Berkeley, UC San Francisco, the US Air Force Academy, University of Virginia, and University of Pittsburgh.

This study and Invisible International’s Change Platform for Tick-borne Illness were funded by generous donations from Mark and Eileen Lovell. The organization is currently seeking additional support to expand its TickBytes data collection sites. To learn more about how you can help, go to: https://invisible.international/give

You can sign up to receive news and updates at https://invisible.international/mission

 ###

Other related courses: Persistent Lyme diseaseNeurologic complications of Lyme diseaseBorrelia persistence “Bench to Bedside” E-Colloquium

Photo credit: francescoch/iStock

End Notes

[1]

Marques A. Chronic Lyme disease: a review. Infect Dis Clin North Am. 2008;22(2):341-viii. doi:10.1016/j.idc.2007.12.011

Asch ES, Bujak DI, Weiss M, Peterson MG, Weinstein A. Lyme disease: an infectious and postinfectious syndrome. J Rheumatol. 1994 Mar;21(3):454-61. PMID: 8006888. [Retrospective evaluation of 215 Lyme patients who were diagnosed and treated > 1 year prior.  Found/described persistent symptoms in 114 (53%).]

Clarissou J, Song A, Bernede C, et al. Efficacy of a long-term antibiotic treatment in patients with a chronic Tick Associated Poly-organic Syndrome (TAPOS). Med Mal Infect. 2009;39(2):108-115. doi:10.1016/j.medmal.2008.11.012. [Open-label prospective study of 100 patients after treatment for chronic TAPOS (Tick Associated Poly-Organic Syndrome), evaluating their evolution on prolonged antibiotics.]

Horowitz RI, Freeman PR. Precision Medicine: The Role of the MSIDS Model in Defining, Diagnosing, and Treating Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome and Other Chronic Illness: Part 2. Healthcare. 2018; 6(4):129. https://doi.org/10.3390/healthcare6040129. [Patient symptom survey and retrospective chart review of 200 patients with chronic Lyme/PTLDS.]

[2]

Strle, F., Cimperman, J., Maraspin, V. et al. Azithromycin versus doxycycline for treatment of erythema migrans: Clinical and microbiological findings. Infection 21, 83–88 (1993). https://doi.org/10.1007/BF01710737. [“Minor” symptoms in 15/52 (29%) who received doxycycline and 10/55 (18%) who received azithromycin.]

Dattwyler, R.J.; Luft, B.J.; Kunkel, M.J.; Finkel, M.F.; Wormser, G.P.; Rush, T.J.; Grunwaldt, E.; Agger, W.A.; Franklin, M.; Oswald, D.; et al. Ceftriaxone compared with doxycycline for the treatment of acute disseminated Lyme disease. N. Engl. J. Med. 1997, 337, 289–294. [Persistent symptoms at last follow-up visit in 18/68 (26%) Ceftriaxone vs 10/72 (13.9%) doxycycline.]

Aucott JN, Rebman AW, Crowder LA, Kortte KB. Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: is there something here?. Qual Life Res. 2013;22(1):75-84. doi:10.1007/s11136-012-0126-6. [Prospective cohort study of 63 patients with EM rash and systemic symptoms treated with doxycycline reported a 36% rate of PTLDS.]

Experts discuss strategies for fighting those Lyme symptoms that won’t go away

Two tick-borne disease experts, a physician and a researcher, discuss the many ways Lyme bacteria evade the immune system and promising new strategies for fighting lingering symptoms.

People with long-haul Lyme disease symptoms are often sidelined by the medical community. In a 2019 survey of 1,900 Lyme patients, 74% reported being treated disrespectfully by a healthcare provider, and 67% said that they postponed or avoided medical treatment due to discrimination, disrespect, or difficulty obtaining care.

Many of these patients develop chronic Lyme because the latest evidence on diagnostics and treatment isn’t reaching busy frontline physicians, who misdiagnose or undertreat. Some health-care providers don’t know that about 30% of Lyme sufferers don’t see the classic Lyme rash. Or that the Lyme screening tests aren’t reliable in the first month after infection. Or that 10 to 20% of the Lyme patients fail to recover after taking the short course of antibiotics recommended by the Infectious Diseases Society of America (IDSA). And, to add insult to injury, there have been no new NIH-funded chronic Lyme treatment trials for more than 20 years — and Lyme sufferers need relief now.

Invisible International aims to fuel meaningful change for patients by accelerating the flow of new medical knowledge to treating physicians through the Bench-to-Bedside E-Colloquium, a monthly series of interactive discussions between world class researchers and boots-on-the-ground clinicians. The objective is to educate the medical and patient communities about promising new research and treatments, and to build bridges between these communities. Each colloquium will be annotated with the latest evidence from peer-reviewed journal articles.

The inaugural E-Colloquium tackles the controversial topic of “Borrelia persistence,” addressing the questions, “How does the Lyme bacterium, Borrelia burgdorferi, survive a recommended dose of antibiotics in the human body, and what treatment strategies can be used to eradicate the surviving organisms?”

The panel features Kenneth Liegner, MD, a distinguished internist who has been diagnosing and treating Lyme disease and related disorders since 1988, and Monica Embers, PhD, associate professor of microbiology and immunology and the director of the vector-borne disease research center at Tulane University School of Medicine. Embers is a leading expert in identifying treatments that can eradicate B. burgdorferi infections in primates, our closest mammalian relatives. The discussion is moderated by Christine Green, MD, a Stanford-trained and board-certified family medicine physician with 30 years of experience treating patients with tick-borne illness.

Invisible International’s Education Platform for Tick-borne Illness is funded by the Montecalvo Family Foundation, and the organization is currently seeking support to expand the E-Colloquium program. This platform currently offers more than 20 free, online Continuing Medical Education (CME) courses on the diagnostics, epidemiology, immunology, symptoms, and treatment of Lyme disease, Bartonellosis, and other tick-borne diseases.

Invisible International, a 501(c)(3) nonprofit organization, is dedicated to reducing the suffering and social marginalization associated with invisible illnesses through innovation, education, and data-driven change projects. Their core team includes board-certified health-care providers in Infectious Disease, Internal Medicine, Family Medicine, Psychiatry, Pharmacy, Pathology, and Physical Medicine and Rehabilitation, many trained at or affiliated with top-tier universities such as Harvard, Stanford, MIT, Brown, UC Berkeley, UC San Francisco, the US Air Force Academy, University of Virginia, and University of Pittsburgh.

You can sign up to receive news and updates at https://invisible.international/mission

Other related courses: Basic principles of diagnostic testingAntibiotic efficacy for treatment of Lyme diseaseThe impact of immune responses on diagnosis and treatment of Lyme disease

Image credit: Happy Photon, iStock

Sign up for our

Newsletter

For health news, free courses, Invisible updates, resources, and more